/* -*- Mode: Java; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- / /* vim: set shiftwidth=2 tabstop=2 autoindent cindent expandtab: */ /* Copyright 2014 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the 'License'); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an 'AS IS' BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This code was forked from https://github.com/notmasteryet/jpgjs. The original version was created by github user notmasteryet - The JPEG specification can be found in the ITU CCITT Recommendation T.81 (www.w3.org/Graphics/JPEG/itu-t81.pdf) - The JFIF specification can be found in the JPEG File Interchange Format (www.w3.org/Graphics/JPEG/jfif3.pdf) - The Adobe Application-Specific JPEG markers in the Supporting the DCT Filters in PostScript Level 2, Technical Note #5116 (partners.adobe.com/public/developer/en/ps/sdk/5116.DCT_Filter.pdf) */ 'use strict'; var JpegImage = (function jpegImage() { var dctZigZag = new Uint8Array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 ]); var dctCos1 = 4017; // cos(pi/16) var dctSin1 = 799; // sin(pi/16) var dctCos3 = 3406; // cos(3*pi/16) var dctSin3 = 2276; // sin(3*pi/16) var dctCos6 = 1567; // cos(6*pi/16) var dctSin6 = 3784; // sin(6*pi/16) var dctSqrt2 = 5793; // sqrt(2) var dctSqrt1d2 = 2896; // sqrt(2) / 2 function constructor() { } function buildHuffmanTable(codeLengths, values) { var k = 0, code = [], i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) { length--; } code.push({children: [], index: 0}); var p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { // p here points to last code code.push(q = {children: [], index: 0}); p.children[p.index] = q.children; p = q; } } return code[0].children; } function getBlockBufferOffset(component, row, col) { return 64 * ((component.blocksPerLine + 1) * row + col); } function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) { var precision = frame.precision; var samplesPerLine = frame.samplesPerLine; var scanLines = frame.scanLines; var mcusPerLine = frame.mcusPerLine; var progressive = frame.progressive; var maxH = frame.maxH, maxV = frame.maxV; var startOffset = offset, bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return (bitsData >> bitsCount) & 1; } bitsData = data[offset++]; if (bitsData === 0xFF) { var nextByte = data[offset++]; if (nextByte) { throw 'unexpected marker: ' + ((bitsData << 8) | nextByte).toString(16); } // unstuff 0 } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { var node = tree; while (true) { node = node[readBit()]; if (typeof node === 'number') { return node; } if (typeof node !== 'object') { throw 'invalid huffman sequence'; } } } function receive(length) { var n = 0; while (length > 0) { n = (n << 1) | readBit(); length--; } return n; } function receiveAndExtend(length) { if (length === 1) { return readBit() === 1 ? 1 : -1; } var n = receive(length); if (n >= 1 << (length - 1)) { return n; } return n + (-1 << length) + 1; } function decodeBaseline(component, offset) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : receiveAndExtend(t); component.blockData[offset] = (component.pred += diff); var k = 1; while (k < 64) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { break; } k += 16; continue; } k += r; var z = dctZigZag[k]; component.blockData[offset + z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, offset) { var t = decodeHuffman(component.huffmanTableDC); var diff = t === 0 ? 0 : (receiveAndExtend(t) << successive); component.blockData[offset] = (component.pred += diff); } function decodeDCSuccessive(component, offset) { component.blockData[offset] |= readBit() << successive; } var eobrun = 0; function decodeACFirst(component, offset) { if (eobrun > 0) { eobrun--; return; } var k = spectralStart, e = spectralEnd; while (k <= e) { var rs = decodeHuffman(component.huffmanTableAC); var s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; var z = dctZigZag[k]; component.blockData[offset + z] = receiveAndExtend(s) * (1 << successive); k++; } } var successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, offset) { var k = spectralStart; var e = spectralEnd; var r = 0; var s; var rs; while (k <= e) { var z = dctZigZag[k]; switch (successiveACState) { case 0: // initial state rs = decodeHuffman(component.huffmanTableAC); s = rs & 15; r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) { throw 'invalid ACn encoding'; } successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: // skipping r zero items case 2: if (component.blockData[offset + z]) { component.blockData[offset + z] += (readBit() << successive); } else { r--; if (r === 0) { successiveACState = successiveACState === 2 ? 3 : 0; } } break; case 3: // set value for a zero item if (component.blockData[offset + z]) { component.blockData[offset + z] += (readBit() << successive); } else { component.blockData[offset + z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: // eob if (component.blockData[offset + z]) { component.blockData[offset + z] += (readBit() << successive); } break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) { successiveACState = 0; } } } function decodeMcu(component, decode, mcu, row, col) { var mcuRow = (mcu / mcusPerLine) | 0; var mcuCol = mcu % mcusPerLine; var blockRow = mcuRow * component.v + row; var blockCol = mcuCol * component.h + col; var offset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, offset); } function decodeBlock(component, decode, mcu) { var blockRow = (mcu / component.blocksPerLine) | 0; var blockCol = mcu % component.blocksPerLine; var offset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, offset); } var componentsLength = components.length; var component, i, j, k, n; var decodeFn; if (progressive) { if (spectralStart === 0) { decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; } else { decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } } else { decodeFn = decodeBaseline; } var mcu = 0, marker; var mcuExpected; if (componentsLength === 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } if (!resetInterval) { resetInterval = mcuExpected; } var h, v; while (mcu < mcuExpected) { // reset interval stuff for (i = 0; i < componentsLength; i++) { components[i].pred = 0; } eobrun = 0; if (componentsLength === 1) { component = components[0]; for (n = 0; n < resetInterval; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < resetInterval; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; } } // find marker bitsCount = 0; marker = (data[offset] << 8) | data[offset + 1]; if (marker <= 0xFF00) { throw 'marker was not found'; } if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx offset += 2; } else { break; } } return offset - startOffset; } // A port of poppler's IDCT method which in turn is taken from: // Christoph Loeffler, Adriaan Ligtenberg, George S. Moschytz, // 'Practical Fast 1-D DCT Algorithms with 11 Multiplications', // IEEE Intl. Conf. on Acoustics, Speech & Signal Processing, 1989, // 988-991. function quantizeAndInverse(component, blockBufferOffset, p) { var qt = component.quantizationTable, blockData = component.blockData; var v0, v1, v2, v3, v4, v5, v6, v7; var p0, p1, p2, p3, p4, p5, p6, p7; var t; // inverse DCT on rows for (var row = 0; row < 64; row += 8) { // gather block data p0 = blockData[blockBufferOffset + row]; p1 = blockData[blockBufferOffset + row + 1]; p2 = blockData[blockBufferOffset + row + 2]; p3 = blockData[blockBufferOffset + row + 3]; p4 = blockData[blockBufferOffset + row + 4]; p5 = blockData[blockBufferOffset + row + 5]; p6 = blockData[blockBufferOffset + row + 6]; p7 = blockData[blockBufferOffset + row + 7]; // dequant p0 p0 *= qt[row]; // check for all-zero AC coefficients if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = (dctSqrt2 * p0 + 512) >> 10; p[row] = t; p[row + 1] = t; p[row + 2] = t; p[row + 3] = t; p[row + 4] = t; p[row + 5] = t; p[row + 6] = t; p[row + 7] = t; continue; } // dequant p1 ... p7 p1 *= qt[row + 1]; p2 *= qt[row + 2]; p3 *= qt[row + 3]; p4 *= qt[row + 4]; p5 *= qt[row + 5]; p6 *= qt[row + 6]; p7 *= qt[row + 7]; // stage 4 v0 = (dctSqrt2 * p0 + 128) >> 8; v1 = (dctSqrt2 * p4 + 128) >> 8; v2 = p2; v3 = p6; v4 = (dctSqrt1d2 * (p1 - p7) + 128) >> 8; v7 = (dctSqrt1d2 * (p1 + p7) + 128) >> 8; v5 = p3 << 4; v6 = p5 << 4; // stage 3 v0 = (v0 + v1 + 1) >> 1; v1 = v0 - v1; t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8; v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8; v3 = t; v4 = (v4 + v6 + 1) >> 1; v6 = v4 - v6; v7 = (v7 + v5 + 1) >> 1; v5 = v7 - v5; // stage 2 v0 = (v0 + v3 + 1) >> 1; v3 = v0 - v3; v1 = (v1 + v2 + 1) >> 1; v2 = v1 - v2; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p[row] = v0 + v7; p[row + 7] = v0 - v7; p[row + 1] = v1 + v6; p[row + 6] = v1 - v6; p[row + 2] = v2 + v5; p[row + 5] = v2 - v5; p[row + 3] = v3 + v4; p[row + 4] = v3 - v4; } // inverse DCT on columns for (var col = 0; col < 8; ++col) { p0 = p[col]; p1 = p[col + 8]; p2 = p[col + 16]; p3 = p[col + 24]; p4 = p[col + 32]; p5 = p[col + 40]; p6 = p[col + 48]; p7 = p[col + 56]; // check for all-zero AC coefficients if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = (dctSqrt2 * p0 + 8192) >> 14; // convert to 8 bit t = (t < -2040) ? 0 : (t >= 2024) ? 255 : (t + 2056) >> 4; blockData[blockBufferOffset + col] = t; blockData[blockBufferOffset + col + 8] = t; blockData[blockBufferOffset + col + 16] = t; blockData[blockBufferOffset + col + 24] = t; blockData[blockBufferOffset + col + 32] = t; blockData[blockBufferOffset + col + 40] = t; blockData[blockBufferOffset + col + 48] = t; blockData[blockBufferOffset + col + 56] = t; continue; } // stage 4 v0 = (dctSqrt2 * p0 + 2048) >> 12; v1 = (dctSqrt2 * p4 + 2048) >> 12; v2 = p2; v3 = p6; v4 = (dctSqrt1d2 * (p1 - p7) + 2048) >> 12; v7 = (dctSqrt1d2 * (p1 + p7) + 2048) >> 12; v5 = p3; v6 = p5; // stage 3 // Shift v0 by 128.5 << 5 here, so we don't need to shift p0...p7 when // converting to UInt8 range later. v0 = ((v0 + v1 + 1) >> 1) + 4112; v1 = v0 - v1; t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12; v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12; v3 = t; v4 = (v4 + v6 + 1) >> 1; v6 = v4 - v6; v7 = (v7 + v5 + 1) >> 1; v5 = v7 - v5; // stage 2 v0 = (v0 + v3 + 1) >> 1; v3 = v0 - v3; v1 = (v1 + v2 + 1) >> 1; v2 = v1 - v2; t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12; v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12; v7 = t; t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12; v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12; v6 = t; // stage 1 p0 = v0 + v7; p7 = v0 - v7; p1 = v1 + v6; p6 = v1 - v6; p2 = v2 + v5; p5 = v2 - v5; p3 = v3 + v4; p4 = v3 - v4; // convert to 8-bit integers p0 = (p0 < 16) ? 0 : (p0 >= 4080) ? 255 : p0 >> 4; p1 = (p1 < 16) ? 0 : (p1 >= 4080) ? 255 : p1 >> 4; p2 = (p2 < 16) ? 0 : (p2 >= 4080) ? 255 : p2 >> 4; p3 = (p3 < 16) ? 0 : (p3 >= 4080) ? 255 : p3 >> 4; p4 = (p4 < 16) ? 0 : (p4 >= 4080) ? 255 : p4 >> 4; p5 = (p5 < 16) ? 0 : (p5 >= 4080) ? 255 : p5 >> 4; p6 = (p6 < 16) ? 0 : (p6 >= 4080) ? 255 : p6 >> 4; p7 = (p7 < 16) ? 0 : (p7 >= 4080) ? 255 : p7 >> 4; // store block data blockData[blockBufferOffset + col] = p0; blockData[blockBufferOffset + col + 8] = p1; blockData[blockBufferOffset + col + 16] = p2; blockData[blockBufferOffset + col + 24] = p3; blockData[blockBufferOffset + col + 32] = p4; blockData[blockBufferOffset + col + 40] = p5; blockData[blockBufferOffset + col + 48] = p6; blockData[blockBufferOffset + col + 56] = p7; } } function buildComponentData(frame, component) { var blocksPerLine = component.blocksPerLine; var blocksPerColumn = component.blocksPerColumn; var computationBuffer = new Int16Array(64); for (var blockRow = 0; blockRow < blocksPerColumn; blockRow++) { for (var blockCol = 0; blockCol < blocksPerLine; blockCol++) { var offset = getBlockBufferOffset(component, blockRow, blockCol); quantizeAndInverse(component, offset, computationBuffer); } } return component.blockData; } function clamp0to255(a) { return a <= 0 ? 0 : a >= 255 ? 255 : a; } constructor.prototype = { parse: function parse(data) { function readUint16() { var value = (data[offset] << 8) | data[offset + 1]; offset += 2; return value; } function readDataBlock() { var length = readUint16(); var array = data.subarray(offset, offset + length - 2); offset += array.length; return array; } function prepareComponents(frame) { var mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH); var mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV); for (var i = 0; i < frame.components.length; i++) { component = frame.components[i]; var blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / frame.maxH); var blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / frame.maxV); var blocksPerLineForMcu = mcusPerLine * component.h; var blocksPerColumnForMcu = mcusPerColumn * component.v; var blocksBufferSize = 64 * blocksPerColumnForMcu * (blocksPerLineForMcu + 1); component.blockData = new Int16Array(blocksBufferSize); component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; } frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var offset = 0, length = data.length; var jfif = null; var adobe = null; var pixels = null; var frame, resetInterval; var quantizationTables = []; var huffmanTablesAC = [], huffmanTablesDC = []; var fileMarker = readUint16(); if (fileMarker !== 0xFFD8) { // SOI (Start of Image) throw 'SOI not found'; } fileMarker = readUint16(); while (fileMarker !== 0xFFD9) { // EOI (End of image) var i, j, l; switch(fileMarker) { case 0xFFE0: // APP0 (Application Specific) case 0xFFE1: // APP1 case 0xFFE2: // APP2 case 0xFFE3: // APP3 case 0xFFE4: // APP4 case 0xFFE5: // APP5 case 0xFFE6: // APP6 case 0xFFE7: // APP7 case 0xFFE8: // APP8 case 0xFFE9: // APP9 case 0xFFEA: // APP10 case 0xFFEB: // APP11 case 0xFFEC: // APP12 case 0xFFED: // APP13 case 0xFFEE: // APP14 case 0xFFEF: // APP15 case 0xFFFE: // COM (Comment) var appData = readDataBlock(); if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00' jfif = { version: { major: appData[5], minor: appData[6] }, densityUnits: appData[7], xDensity: (appData[8] << 8) | appData[9], yDensity: (appData[10] << 8) | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]) }; } } // TODO APP1 - Exif if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65) { // 'Adobe' adobe = { version: (appData[5] << 8) | appData[6], flags0: (appData[7] << 8) | appData[8], flags1: (appData[9] << 8) | appData[10], transformCode: appData[11] }; } } break; case 0xFFDB: // DQT (Define Quantization Tables) var quantizationTablesLength = readUint16(); var quantizationTablesEnd = quantizationTablesLength + offset - 2; var z; while (offset < quantizationTablesEnd) { var quantizationTableSpec = data[offset++]; var tableData = new Uint16Array(64); if ((quantizationTableSpec >> 4) === 0) { // 8 bit values for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if ((quantizationTableSpec >> 4) === 1) { //16 bit for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = readUint16(); } } else { throw 'DQT: invalid table spec'; } quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT) case 0xFFC1: // SOF1 (Start of Frame, Extended DCT) case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT) if (frame) { throw 'Only single frame JPEGs supported'; } readUint16(); // skip data length frame = {}; frame.extended = (fileMarker === 0xFFC1); frame.progressive = (fileMarker === 0xFFC2); frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = []; frame.componentIds = {}; var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; var h = data[offset + 1] >> 4; var v = data[offset + 1] & 15; if (maxH < h) { maxH = h; } if (maxV < v) { maxV = v; } var qId = data[offset + 2]; l = frame.components.push({ h: h, v: v, quantizationTable: quantizationTables[qId] }); frame.componentIds[componentId] = l - 1; offset += 3; } frame.maxH = maxH; frame.maxV = maxV; prepareComponents(frame); break; case 0xFFC4: // DHT (Define Huffman Tables) var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { var huffmanTableSpec = data[offset++]; var codeLengths = new Uint8Array(16); var codeLengthSum = 0; for (j = 0; j < 16; j++, offset++) { codeLengthSum += (codeLengths[j] = data[offset]); } var huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++, offset++) { huffmanValues[j] = data[offset]; } i += 17 + codeLengthSum; ((huffmanTableSpec >> 4) === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: // DRI (Define Restart Interval) readUint16(); // skip data length resetInterval = readUint16(); break; case 0xFFDA: // SOS (Start of Scan) var scanLength = readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { var componentIndex = frame.componentIds[data[offset++]]; component = frame.components[componentIndex]; var tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15); offset += processed; break; case 0xFFFF: // Fill bytes if (data[offset] !== 0xFF) { // Avoid skipping a valid marker. offset--; } break; default: if (data[offset - 3] === 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) { // could be incorrect encoding -- last 0xFF byte of the previous // block was eaten by the encoder offset -= 3; break; } throw 'unknown JPEG marker ' + fileMarker.toString(16); } fileMarker = readUint16(); } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (i = 0; i < frame.components.length; i++) { component = frame.components[i]; this.components.push({ output: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV, blocksPerLine: component.blocksPerLine, blocksPerColumn: component.blocksPerColumn }); } this.numComponents = this.components.length; }, _getLinearizedBlockData: function getLinearizedBlockData(width, height) { var scaleX = this.width / width, scaleY = this.height / height; var component, componentScaleX, componentScaleY, blocksPerScanline; var x, y, i, j, k; var index; var offset = 0; var output; var numComponents = this.components.length; var dataLength = width * height * numComponents; var data = new Uint8Array(dataLength); var xScaleBlockOffset = new Uint32Array(width); var mask3LSB = 0xfffffff8; // used to clear the 3 LSBs for (i = 0; i < numComponents; i++) { component = this.components[i]; componentScaleX = component.scaleX * scaleX; componentScaleY = component.scaleY * scaleY; offset = i; output = component.output; blocksPerScanline = (component.blocksPerLine + 1) << 3; // precalculate the xScaleBlockOffset for (x = 0; x < width; x++) { j = 0 | (x * componentScaleX); xScaleBlockOffset[x] = ((j & mask3LSB) << 3) | (j & 7); } // linearize the blocks of the component for (y = 0; y < height; y++) { j = 0 | (y * componentScaleY); index = blocksPerScanline * (j & mask3LSB) | ((j & 7) << 3); for (x = 0; x < width; x++) { data[offset] = output[index + xScaleBlockOffset[x]]; offset += numComponents; } } } // decodeTransform contains pairs of multiplier (-256..256) and additive var transform = this.decodeTransform; if (transform) { for (i = 0; i < dataLength;) { for (j = 0, k = 0; j < numComponents; j++, i++, k += 2) { data[i] = ((data[i] * transform[k]) >> 8) + transform[k + 1]; } } } return data; }, _isColorConversionNeeded: function isColorConversionNeeded() { if (this.adobe && this.adobe.transformCode) { // The adobe transform marker overrides any previous setting return true; } else if (this.numComponents === 3) { return true; } else { return false; } }, _convertYccToRgb: function convertYccToRgb(data) { var Y, Cb, Cr; for (var i = 0, length = data.length; i < length; i += 3) { Y = data[i ]; Cb = data[i + 1]; Cr = data[i + 2]; data[i ] = clamp0to255(Y - 179.456 + 1.402 * Cr); data[i + 1] = clamp0to255(Y + 135.459 - 0.344 * Cb - 0.714 * Cr); data[i + 2] = clamp0to255(Y - 226.816 + 1.772 * Cb); } return data; }, _convertYcckToRgb: function convertYcckToRgb(data) { var Y, Cb, Cr, k; var offset = 0; for (var i = 0, length = data.length; i < length; i += 4) { Y = data[i]; Cb = data[i + 1]; Cr = data[i + 2]; k = data[i + 3]; var r = -122.67195406894 + Cb * (-6.60635669420364e-5 * Cb + 0.000437130475926232 * Cr - 5.4080610064599e-5 * Y + 0.00048449797120281 * k - 0.154362151871126) + Cr * (-0.000957964378445773 * Cr + 0.000817076911346625 * Y - 0.00477271405408747 * k + 1.53380253221734) + Y * (0.000961250184130688 * Y - 0.00266257332283933 * k + 0.48357088451265) + k * (-0.000336197177618394 * k + 0.484791561490776); var g = 107.268039397724 + Cb * (2.19927104525741e-5 * Cb - 0.000640992018297945 * Cr + 0.000659397001245577 * Y + 0.000426105652938837 * k - 0.176491792462875) + Cr * (-0.000778269941513683 * Cr + 0.00130872261408275 * Y + 0.000770482631801132 * k - 0.151051492775562) + Y * (0.00126935368114843 * Y - 0.00265090189010898 * k + 0.25802910206845) + k * (-0.000318913117588328 * k - 0.213742400323665); var b = -20.810012546947 + Cb * (-0.000570115196973677 * Cb - 2.63409051004589e-5 * Cr + 0.0020741088115012 * Y - 0.00288260236853442 * k + 0.814272968359295) + Cr * (-1.53496057440975e-5 * Cr - 0.000132689043961446 * Y + 0.000560833691242812 * k - 0.195152027534049) + Y * (0.00174418132927582 * Y - 0.00255243321439347 * k + 0.116935020465145) + k * (-0.000343531996510555 * k + 0.24165260232407); data[offset++] = clamp0to255(r); data[offset++] = clamp0to255(g); data[offset++] = clamp0to255(b); } return data; }, _convertYcckToCmyk: function convertYcckToCmyk(data) { var Y, Cb, Cr; for (var i = 0, length = data.length; i < length; i += 4) { Y = data[i]; Cb = data[i + 1]; Cr = data[i + 2]; data[i ] = clamp0to255(434.456 - Y - 1.402 * Cr); data[i + 1] = clamp0to255(119.541 - Y + 0.344 * Cb + 0.714 * Cr); data[i + 2] = clamp0to255(481.816 - Y - 1.772 * Cb); // K in data[i + 3] is unchanged } return data; }, _convertCmykToRgb: function convertCmykToRgb(data) { var c, m, y, k; var offset = 0; var min = -255 * 255 * 255; var scale = 1 / 255 / 255; for (var i = 0, length = data.length; i < length; i += 4) { c = data[i]; m = data[i + 1]; y = data[i + 2]; k = data[i + 3]; var r = c * (-4.387332384609988 * c + 54.48615194189176 * m + 18.82290502165302 * y + 212.25662451639585 * k - 72734.4411664936) + m * (1.7149763477362134 * m - 5.6096736904047315 * y - 17.873870861415444 * k - 1401.7366389350734) + y * (-2.5217340131683033 * y - 21.248923337353073 * k + 4465.541406466231) - k * (21.86122147463605 * k + 48317.86113160301); var g = c * (8.841041422036149 * c + 60.118027045597366 * m + 6.871425592049007 * y + 31.159100130055922 * k - 20220.756542821975) + m * (-15.310361306967817 * m + 17.575251261109482 * y + 131.35250912493976 * k - 48691.05921601825) + y * (4.444339102852739 * y + 9.8632861493405 * k - 6341.191035517494) - k * (20.737325471181034 * k + 47890.15695978492); var b = c * (0.8842522430003296 * c + 8.078677503112928 * m + 30.89978309703729 * y - 0.23883238689178934 * k - 3616.812083916688) + m * (10.49593273432072 * m + 63.02378494754052 * y + 50.606957656360734 * k - 28620.90484698408) + y * (0.03296041114873217 * y + 115.60384449646641 * k - 49363.43385999684) - k * (22.33816807309886 * k + 45932.16563550634); data[offset++] = r >= 0 ? 255 : r <= min ? 0 : 255 + r * scale | 0; data[offset++] = g >= 0 ? 255 : g <= min ? 0 : 255 + g * scale | 0; data[offset++] = b >= 0 ? 255 : b <= min ? 0 : 255 + b * scale | 0; } return data; }, getData: function getData(width, height, forceRGBoutput) { if (this.numComponents > 4) { throw 'Unsupported color mode'; } // type of data: Uint8Array(width * height * numComponents) var data = this._getLinearizedBlockData(width, height); if (this.numComponents === 3) { return this._convertYccToRgb(data); } else if (this.numComponents === 4) { if (this._isColorConversionNeeded()) { if (forceRGBoutput) { return this._convertYcckToRgb(data); } else { return this._convertYcckToCmyk(data); } } else if (forceRGBoutput) { return this._convertCmykToRgb(data); } } return data; } }; return constructor; })();