617 lines
45 KiB
HTML
617 lines
45 KiB
HTML
|
<!DOCTYPE HTML>
|
|||
|
<html lang="en" class="sidebar-visible no-js light">
|
|||
|
<head>
|
|||
|
<!-- Book generated using mdBook -->
|
|||
|
<meta charset="UTF-8">
|
|||
|
<title>Generic Data Types - The Rust Programming Language</title>
|
|||
|
|
|||
|
|
|||
|
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
|||
|
<meta name="description" content="">
|
|||
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|||
|
<meta name="theme-color" content="#ffffff" />
|
|||
|
|
|||
|
<link rel="shortcut icon" href="favicon.png">
|
|||
|
<link rel="stylesheet" href="css/variables.css">
|
|||
|
<link rel="stylesheet" href="css/general.css">
|
|||
|
<link rel="stylesheet" href="css/chrome.css">
|
|||
|
<link rel="stylesheet" href="css/print.css" media="print">
|
|||
|
|
|||
|
<!-- Fonts -->
|
|||
|
<link rel="stylesheet" href="FontAwesome/css/font-awesome.css">
|
|||
|
<link href="googleFonts/css.css" rel="stylesheet" type="text/css">
|
|||
|
|
|||
|
<!-- Highlight.js Stylesheets -->
|
|||
|
<link rel="stylesheet" href="highlight.css">
|
|||
|
<link rel="stylesheet" href="tomorrow-night.css">
|
|||
|
<link rel="stylesheet" href="ayu-highlight.css">
|
|||
|
|
|||
|
<!-- Custom theme stylesheets -->
|
|||
|
|
|||
|
<link rel="stylesheet" href="ferris.css">
|
|||
|
|
|||
|
<link rel="stylesheet" href="theme/2018-edition.css">
|
|||
|
|
|||
|
|
|||
|
|
|||
|
</head>
|
|||
|
<body>
|
|||
|
<!-- Provide site root to javascript -->
|
|||
|
<script type="text/javascript">
|
|||
|
var path_to_root = "";
|
|||
|
var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "light" : "light";
|
|||
|
</script>
|
|||
|
|
|||
|
<!-- Work around some values being stored in localStorage wrapped in quotes -->
|
|||
|
<script type="text/javascript">
|
|||
|
try {
|
|||
|
var theme = localStorage.getItem('mdbook-theme');
|
|||
|
var sidebar = localStorage.getItem('mdbook-sidebar');
|
|||
|
|
|||
|
if (theme.startsWith('"') && theme.endsWith('"')) {
|
|||
|
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
|
|||
|
}
|
|||
|
|
|||
|
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
|
|||
|
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
|
|||
|
}
|
|||
|
} catch (e) { }
|
|||
|
</script>
|
|||
|
|
|||
|
<!-- Set the theme before any content is loaded, prevents flash -->
|
|||
|
<script type="text/javascript">
|
|||
|
var theme;
|
|||
|
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
|
|||
|
if (theme === null || theme === undefined) { theme = default_theme; }
|
|||
|
var html = document.querySelector('html');
|
|||
|
html.classList.remove('no-js')
|
|||
|
html.classList.remove('light')
|
|||
|
html.classList.add(theme);
|
|||
|
html.classList.add('js');
|
|||
|
</script>
|
|||
|
|
|||
|
<!-- Hide / unhide sidebar before it is displayed -->
|
|||
|
<script type="text/javascript">
|
|||
|
var html = document.querySelector('html');
|
|||
|
var sidebar = 'hidden';
|
|||
|
if (document.body.clientWidth >= 1080) {
|
|||
|
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
|
|||
|
sidebar = sidebar || 'visible';
|
|||
|
}
|
|||
|
html.classList.remove('sidebar-visible');
|
|||
|
html.classList.add("sidebar-" + sidebar);
|
|||
|
</script>
|
|||
|
|
|||
|
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
|
|||
|
<div id="sidebar-scrollbox" class="sidebar-scrollbox">
|
|||
|
<ol class="chapter"><li class="expanded affix "><a href="title-page.html">The Rust Programming Language</a></li><li class="expanded affix "><a href="foreword.html">Foreword</a></li><li class="expanded affix "><a href="ch00-00-introduction.html">Introduction</a></li><li class="expanded "><a href="ch01-00-getting-started.html"><strong aria-hidden="true">1.</strong> Getting Started</a></li><li><ol class="section"><li class="expanded "><a href="ch01-01-installation.html"><strong aria-hidden="true">1.1.</strong> Installation</a></li><li class="expanded "><a href="ch01-02-hello-world.html"><strong aria-hidden="true">1.2.</strong> Hello, World!</a></li><li class="expanded "><a href="ch01-03-hello-cargo.html"><strong aria-hidden="true">1.3.</strong> Hello, Cargo!</a></li></ol></li><li class="expanded "><a href="ch02-00-guessing-game-tutorial.html"><strong aria-hidden="true">2.</strong> Programming a Guessing Game</a></li><li class="expanded "><a href="ch03-00-common-programming-concepts.html"><strong aria-hidden="true">3.</strong> Common Programming Concepts</a></li><li><ol class="section"><li class="expanded "><a href="ch03-01-variables-and-mutability.html"><strong aria-hidden="true">3.1.</strong> Variables and Mutability</a></li><li class="expanded "><a href="ch03-02-data-types.html"><strong aria-hidden="true">3.2.</strong> Data Types</a></li><li class="expanded "><a href="ch03-03-how-functions-work.html"><strong aria-hidden="true">3.3.</strong> Functions</a></li><li class="expanded "><a href="ch03-04-comments.html"><strong aria-hidden="true">3.4.</strong> Comments</a></li><li class="expanded "><a href="ch03-05-control-flow.html"><strong aria-hidden="true">3.5.</strong> Control Flow</a></li></ol></li><li class="expanded "><a href="ch04-00-understanding-ownership.html"><strong aria-hidden="true">4.</strong> Understanding Ownership</a></li><li><ol class="section"><li class="expanded "><a href="ch04-01-what-is-ownership.html"><strong aria-hidden="true">4.1.</strong> What is Ownership?</a></li><li class="expanded "><a href="ch04-02-references-and-borrowing.html"><strong aria-hidden="true">4.2.</strong> References and Borrowing</a></li><li class="expanded "><a href="ch04-03-slices.html"><strong aria-hidden="true">4.3.</strong> The Slice Type</a></li></ol></li><li class="expanded "><a href="ch05-00-structs.html"><strong aria-hidden="true">5.</strong> Using Structs to Structure Related Data</a></li><li><ol class="section"><li class="expanded "><a href="ch05-01-defining-structs.html"><strong aria-hidden="true">5.1.</strong> Defining and Instantiating Structs</a></li><li class="expanded "><a href="ch05-02-example-structs.html"><strong aria-hidden="true">5.2.</strong> An Example Program Using Structs</a></li><li class="expanded "><a href="ch05-03-method-syntax.html"><strong aria-hidden="true">5.3.</strong> Method Syntax</a></li></ol></li><li class="expanded "><a href="ch06-00-enums.html"><strong aria-hidden="true">6.</strong> Enums and Pattern Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch06-01-defining-an-enum.html"><strong aria-hidden="true">6.1.</strong> Defining an Enum</a></li><li class="expanded "><a href="ch06-02-match.html"><strong aria-hidden="true">6.2.</strong> The match Control Flow Operator</a></li><li class="expanded "><a href="ch06-03-if-let.html"><strong aria-hidden="true">6.3.</strong> Concise Control Flow with if let</a></li></ol></li><li class="expanded "><a href="ch07-00-managing-growing-projects-with-packages-crates-and-modules.html"><strong aria-hidden="true">7.</strong> Managing Growing Projects with Packages, Crates, and Modules</a></li><li><ol class="section"><li class="expanded "><a href="ch07-01-packages-and-crates.html"><strong aria-hidden="true">7.1.</strong> Packages and Crates</a></li><li class="expanded "><a href="ch07-02-defining-modules-to-control-scope-and-privacy.html"><strong aria-hidden="true">7.2.</strong> Defining Modules to Control Scope and Privacy</a></li><li class="expanded "><a href="ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html"><
|
|||
|
</div>
|
|||
|
<div id="sidebar-resize-handle" class="sidebar-resize-handle"></div>
|
|||
|
</nav>
|
|||
|
|
|||
|
<div id="page-wrapper" class="page-wrapper">
|
|||
|
|
|||
|
<div class="page">
|
|||
|
|
|||
|
<div id="menu-bar" class="menu-bar">
|
|||
|
<div id="menu-bar-sticky-container">
|
|||
|
<div class="left-buttons">
|
|||
|
<button id="sidebar-toggle" class="icon-button" type="button" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
|
|||
|
<i class="fa fa-bars"></i>
|
|||
|
</button>
|
|||
|
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
|
|||
|
<i class="fa fa-paint-brush"></i>
|
|||
|
</button>
|
|||
|
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
|
|||
|
<li role="none"><button role="menuitem" class="theme" id="light">Light (default)</button></li>
|
|||
|
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
|
|||
|
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
|
|||
|
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
|
|||
|
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
|
|||
|
</ul>
|
|||
|
|
|||
|
<button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
|
|||
|
<i class="fa fa-search"></i>
|
|||
|
</button>
|
|||
|
|
|||
|
</div>
|
|||
|
|
|||
|
<h1 class="menu-title">The Rust Programming Language</h1>
|
|||
|
|
|||
|
<div class="right-buttons">
|
|||
|
<a href="print.html" title="Print this book" aria-label="Print this book">
|
|||
|
<i id="print-button" class="fa fa-print"></i>
|
|||
|
</a>
|
|||
|
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
|
|||
|
<div id="search-wrapper" class="hidden">
|
|||
|
<form id="searchbar-outer" class="searchbar-outer">
|
|||
|
<input type="search" name="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
|
|||
|
</form>
|
|||
|
<div id="searchresults-outer" class="searchresults-outer hidden">
|
|||
|
<div id="searchresults-header" class="searchresults-header"></div>
|
|||
|
<ul id="searchresults">
|
|||
|
</ul>
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
|
|||
|
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
|
|||
|
<script type="text/javascript">
|
|||
|
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
|
|||
|
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
|
|||
|
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
|
|||
|
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
|
|||
|
});
|
|||
|
</script>
|
|||
|
|
|||
|
<div id="content" class="content">
|
|||
|
<main>
|
|||
|
<h2><a class="header" href="#generic-data-types" id="generic-data-types">Generic Data Types</a></h2>
|
|||
|
<p>We can use generics to create definitions for items like function signatures or
|
|||
|
structs, which we can then use with many different concrete data types. Let’s
|
|||
|
first look at how to define functions, structs, enums, and methods using
|
|||
|
generics. Then we’ll discuss how generics affect code performance.</p>
|
|||
|
<h3><a class="header" href="#in-function-definitions" id="in-function-definitions">In Function Definitions</a></h3>
|
|||
|
<p>When defining a function that uses generics, we place the generics in the
|
|||
|
signature of the function where we would usually specify the data types of the
|
|||
|
parameters and return value. Doing so makes our code more flexible and provides
|
|||
|
more functionality to callers of our function while preventing code duplication.</p>
|
|||
|
<p>Continuing with our <code>largest</code> function, Listing 10-4 shows two functions that
|
|||
|
both find the largest value in a slice.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">fn largest_i32(list: &[i32]) -> i32 {
|
|||
|
let mut largest = list[0];
|
|||
|
|
|||
|
for &item in list.iter() {
|
|||
|
if item > largest {
|
|||
|
largest = item;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
largest
|
|||
|
}
|
|||
|
|
|||
|
fn largest_char(list: &[char]) -> char {
|
|||
|
let mut largest = list[0];
|
|||
|
|
|||
|
for &item in list.iter() {
|
|||
|
if item > largest {
|
|||
|
largest = item;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
largest
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let number_list = vec![34, 50, 25, 100, 65];
|
|||
|
|
|||
|
let result = largest_i32(&number_list);
|
|||
|
println!("The largest number is {}", result);
|
|||
|
<span class="boring"> assert_eq!(result, 100);
|
|||
|
</span>
|
|||
|
let char_list = vec!['y', 'm', 'a', 'q'];
|
|||
|
|
|||
|
let result = largest_char(&char_list);
|
|||
|
println!("The largest char is {}", result);
|
|||
|
<span class="boring"> assert_eq!(result, 'y');
|
|||
|
</span>}
|
|||
|
</code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-4: Two functions that differ only in their
|
|||
|
names and the types in their signatures</span></p>
|
|||
|
<p>The <code>largest_i32</code> function is the one we extracted in Listing 10-3 that finds
|
|||
|
the largest <code>i32</code> in a slice. The <code>largest_char</code> function finds the largest
|
|||
|
<code>char</code> in a slice. The function bodies have the same code, so let’s eliminate
|
|||
|
the duplication by introducing a generic type parameter in a single function.</p>
|
|||
|
<p>To parameterize the types in the new function we’ll define, we need to name the
|
|||
|
type parameter, just as we do for the value parameters to a function. You can
|
|||
|
use any identifier as a type parameter name. But we’ll use <code>T</code> because, by
|
|||
|
convention, parameter names in Rust are short, often just a letter, and Rust’s
|
|||
|
type-naming convention is CamelCase. Short for “type,” <code>T</code> is the default
|
|||
|
choice of most Rust programmers.</p>
|
|||
|
<p>When we use a parameter in the body of the function, we have to declare the
|
|||
|
parameter name in the signature so the compiler knows what that name means.
|
|||
|
Similarly, when we use a type parameter name in a function signature, we have
|
|||
|
to declare the type parameter name before we use it. To define the generic
|
|||
|
<code>largest</code> function, place type name declarations inside angle brackets, <code><></code>,
|
|||
|
between the name of the function and the parameter list, like this:</p>
|
|||
|
<pre><code class="language-rust ignore">fn largest<T>(list: &[T]) -> T {
|
|||
|
</code></pre>
|
|||
|
<p>We read this definition as: the function <code>largest</code> is generic over some type
|
|||
|
<code>T</code>. This function has one parameter named <code>list</code>, which is a slice of values
|
|||
|
of type <code>T</code>. The <code>largest</code> function will return a value of the same type <code>T</code>.</p>
|
|||
|
<p>Listing 10-5 shows the combined <code>largest</code> function definition using the generic
|
|||
|
data type in its signature. The listing also shows how we can call the function
|
|||
|
with either a slice of <code>i32</code> values or <code>char</code> values. Note that this code won’t
|
|||
|
compile yet, but we’ll fix it later in this chapter.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><code class="language-rust ignore does_not_compile">fn largest<T>(list: &[T]) -> T {
|
|||
|
let mut largest = list[0];
|
|||
|
|
|||
|
for &item in list.iter() {
|
|||
|
if item > largest {
|
|||
|
largest = item;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
largest
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let number_list = vec![34, 50, 25, 100, 65];
|
|||
|
|
|||
|
let result = largest(&number_list);
|
|||
|
println!("The largest number is {}", result);
|
|||
|
|
|||
|
let char_list = vec!['y', 'm', 'a', 'q'];
|
|||
|
|
|||
|
let result = largest(&char_list);
|
|||
|
println!("The largest char is {}", result);
|
|||
|
}
|
|||
|
</code></pre>
|
|||
|
<p><span class="caption">Listing 10-5: A definition of the <code>largest</code> function that
|
|||
|
uses generic type parameters but doesn’t compile yet</span></p>
|
|||
|
<p>If we compile this code right now, we’ll get this error:</p>
|
|||
|
<pre><code class="language-text">error[E0369]: binary operation `>` cannot be applied to type `T`
|
|||
|
--> src/main.rs:5:12
|
|||
|
|
|
|||
|
5 | if item > largest {
|
|||
|
| ^^^^^^^^^^^^^^
|
|||
|
|
|
|||
|
= note: an implementation of `std::cmp::PartialOrd` might be missing for `T`
|
|||
|
</code></pre>
|
|||
|
<p>The note mentions <code>std::cmp::PartialOrd</code>, which is a <em>trait</em>. We’ll talk about
|
|||
|
traits in the next section. For now, this error states that the body of
|
|||
|
<code>largest</code> won’t work for all possible types that <code>T</code> could be. Because we want
|
|||
|
to compare values of type <code>T</code> in the body, we can only use types whose values
|
|||
|
can be ordered. To enable comparisons, the standard library has the
|
|||
|
<code>std::cmp::PartialOrd</code> trait that you can implement on types (see Appendix C
|
|||
|
for more on this trait). You’ll learn how to specify that a generic type has a
|
|||
|
particular trait in the <a href="ch10-02-traits.html#traits-as-parameters">“Traits as Parameters”</a><!--
|
|||
|
ignore --> section, but let’s first explore other ways of using generic type
|
|||
|
parameters.</p>
|
|||
|
<h3><a class="header" href="#in-struct-definitions" id="in-struct-definitions">In Struct Definitions</a></h3>
|
|||
|
<p>We can also define structs to use a generic type parameter in one or more
|
|||
|
fields using the <code><></code> syntax. Listing 10-6 shows how to define a <code>Point<T></code>
|
|||
|
struct to hold <code>x</code> and <code>y</code> coordinate values of any type.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">struct Point<T> {
|
|||
|
x: T,
|
|||
|
y: T,
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let integer = Point { x: 5, y: 10 };
|
|||
|
let float = Point { x: 1.0, y: 4.0 };
|
|||
|
}
|
|||
|
</code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-6: A <code>Point<T></code> struct that holds <code>x</code> and <code>y</code>
|
|||
|
values of type <code>T</code></span></p>
|
|||
|
<p>The syntax for using generics in struct definitions is similar to that used in
|
|||
|
function definitions. First, we declare the name of the type parameter inside
|
|||
|
angle brackets just after the name of the struct. Then we can use the generic
|
|||
|
type in the struct definition where we would otherwise specify concrete data
|
|||
|
types.</p>
|
|||
|
<p>Note that because we’ve used only one generic type to define <code>Point<T></code>, this
|
|||
|
definition says that the <code>Point<T></code> struct is generic over some type <code>T</code>, and
|
|||
|
the fields <code>x</code> and <code>y</code> are <em>both</em> that same type, whatever that type may be. If
|
|||
|
we create an instance of a <code>Point<T></code> that has values of different types, as in
|
|||
|
Listing 10-7, our code won’t compile.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><code class="language-rust ignore does_not_compile">struct Point<T> {
|
|||
|
x: T,
|
|||
|
y: T,
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let wont_work = Point { x: 5, y: 4.0 };
|
|||
|
}
|
|||
|
</code></pre>
|
|||
|
<p><span class="caption">Listing 10-7: The fields <code>x</code> and <code>y</code> must be the same
|
|||
|
type because both have the same generic data type <code>T</code>.</span></p>
|
|||
|
<p>In this example, when we assign the integer value 5 to <code>x</code>, we let the
|
|||
|
compiler know that the generic type <code>T</code> will be an integer for this instance of
|
|||
|
<code>Point<T></code>. Then when we specify 4.0 for <code>y</code>, which we’ve defined to have the
|
|||
|
same type as <code>x</code>, we’ll get a type mismatch error like this:</p>
|
|||
|
<pre><code class="language-text">error[E0308]: mismatched types
|
|||
|
--> src/main.rs:7:38
|
|||
|
|
|
|||
|
7 | let wont_work = Point { x: 5, y: 4.0 };
|
|||
|
| ^^^ expected integer, found
|
|||
|
floating-point number
|
|||
|
|
|
|||
|
= note: expected type `{integer}`
|
|||
|
found type `{float}`
|
|||
|
</code></pre>
|
|||
|
<p>To define a <code>Point</code> struct where <code>x</code> and <code>y</code> are both generics but could have
|
|||
|
different types, we can use multiple generic type parameters. For example, in
|
|||
|
Listing 10-8, we can change the definition of <code>Point</code> to be generic over types
|
|||
|
<code>T</code> and <code>U</code> where <code>x</code> is of type <code>T</code> and <code>y</code> is of type <code>U</code>.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">struct Point<T, U> {
|
|||
|
x: T,
|
|||
|
y: U,
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let both_integer = Point { x: 5, y: 10 };
|
|||
|
let both_float = Point { x: 1.0, y: 4.0 };
|
|||
|
let integer_and_float = Point { x: 5, y: 4.0 };
|
|||
|
}
|
|||
|
</code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-8: A <code>Point<T, U></code> generic over two types so
|
|||
|
that <code>x</code> and <code>y</code> can be values of different types</span></p>
|
|||
|
<p>Now all the instances of <code>Point</code> shown are allowed! You can use as many generic
|
|||
|
type parameters in a definition as you want, but using more than a few makes
|
|||
|
your code hard to read. When you need lots of generic types in your code, it
|
|||
|
could indicate that your code needs restructuring into smaller pieces.</p>
|
|||
|
<h3><a class="header" href="#in-enum-definitions" id="in-enum-definitions">In Enum Definitions</a></h3>
|
|||
|
<p>As we did with structs, we can define enums to hold generic data types in their
|
|||
|
variants. Let’s take another look at the <code>Option<T></code> enum that the standard
|
|||
|
library provides, which we used in Chapter 6:</p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">
|
|||
|
<span class="boring">#![allow(unused_variables)]
|
|||
|
</span><span class="boring">fn main() {
|
|||
|
</span>enum Option<T> {
|
|||
|
Some(T),
|
|||
|
None,
|
|||
|
}
|
|||
|
<span class="boring">}
|
|||
|
</span></code></pre></pre>
|
|||
|
<p>This definition should now make more sense to you. As you can see, <code>Option<T></code>
|
|||
|
is an enum that is generic over type <code>T</code> and has two variants: <code>Some</code>, which
|
|||
|
holds one value of type <code>T</code>, and a <code>None</code> variant that doesn’t hold any value.
|
|||
|
By using the <code>Option<T></code> enum, we can express the abstract concept of having an
|
|||
|
optional value, and because <code>Option<T></code> is generic, we can use this abstraction
|
|||
|
no matter what the type of the optional value is.</p>
|
|||
|
<p>Enums can use multiple generic types as well. The definition of the <code>Result</code>
|
|||
|
enum that we used in Chapter 9 is one example:</p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">
|
|||
|
<span class="boring">#![allow(unused_variables)]
|
|||
|
</span><span class="boring">fn main() {
|
|||
|
</span>enum Result<T, E> {
|
|||
|
Ok(T),
|
|||
|
Err(E),
|
|||
|
}
|
|||
|
<span class="boring">}
|
|||
|
</span></code></pre></pre>
|
|||
|
<p>The <code>Result</code> enum is generic over two types, <code>T</code> and <code>E</code>, and has two variants:
|
|||
|
<code>Ok</code>, which holds a value of type <code>T</code>, and <code>Err</code>, which holds a value of type
|
|||
|
<code>E</code>. This definition makes it convenient to use the <code>Result</code> enum anywhere we
|
|||
|
have an operation that might succeed (return a value of some type <code>T</code>) or fail
|
|||
|
(return an error of some type <code>E</code>). In fact, this is what we used to open a
|
|||
|
file in Listing 9-3, where <code>T</code> was filled in with the type <code>std::fs::File</code> when
|
|||
|
the file was opened successfully and <code>E</code> was filled in with the type
|
|||
|
<code>std::io::Error</code> when there were problems opening the file.</p>
|
|||
|
<p>When you recognize situations in your code with multiple struct or enum
|
|||
|
definitions that differ only in the types of the values they hold, you can
|
|||
|
avoid duplication by using generic types instead.</p>
|
|||
|
<h3><a class="header" href="#in-method-definitions" id="in-method-definitions">In Method Definitions</a></h3>
|
|||
|
<p>We can implement methods on structs and enums (as we did in Chapter 5) and use
|
|||
|
generic types in their definitions, too. Listing 10-9 shows the <code>Point<T></code>
|
|||
|
struct we defined in Listing 10-6 with a method named <code>x</code> implemented on it.</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">struct Point<T> {
|
|||
|
x: T,
|
|||
|
y: T,
|
|||
|
}
|
|||
|
|
|||
|
impl<T> Point<T> {
|
|||
|
fn x(&self) -> &T {
|
|||
|
&self.x
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let p = Point { x: 5, y: 10 };
|
|||
|
|
|||
|
println!("p.x = {}", p.x());
|
|||
|
}
|
|||
|
</code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-9: Implementing a method named <code>x</code> on the
|
|||
|
<code>Point<T></code> struct that will return a reference to the <code>x</code> field of type
|
|||
|
<code>T</code></span></p>
|
|||
|
<p>Here, we’ve defined a method named <code>x</code> on <code>Point<T></code> that returns a reference
|
|||
|
to the data in the field <code>x</code>.</p>
|
|||
|
<p>Note that we have to declare <code>T</code> just after <code>impl</code> so we can use it to specify
|
|||
|
that we’re implementing methods on the type <code>Point<T></code>. By declaring <code>T</code> as a
|
|||
|
generic type after <code>impl</code>, Rust can identify that the type in the angle
|
|||
|
brackets in <code>Point</code> is a generic type rather than a concrete type.</p>
|
|||
|
<p>We could, for example, implement methods only on <code>Point<f32></code> instances rather
|
|||
|
than on <code>Point<T></code> instances with any generic type. In Listing 10-10 we use the
|
|||
|
concrete type <code>f32</code>, meaning we don’t declare any types after <code>impl</code>.</p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">
|
|||
|
<span class="boring">#![allow(unused_variables)]
|
|||
|
</span><span class="boring">fn main() {
|
|||
|
</span><span class="boring">struct Point<T> {
|
|||
|
</span><span class="boring"> x: T,
|
|||
|
</span><span class="boring"> y: T,
|
|||
|
</span><span class="boring">}
|
|||
|
</span><span class="boring">
|
|||
|
</span>impl Point<f32> {
|
|||
|
fn distance_from_origin(&self) -> f32 {
|
|||
|
(self.x.powi(2) + self.y.powi(2)).sqrt()
|
|||
|
}
|
|||
|
}
|
|||
|
<span class="boring">}
|
|||
|
</span></code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-10: An <code>impl</code> block that only applies to a
|
|||
|
struct with a particular concrete type for the generic type parameter <code>T</code></span></p>
|
|||
|
<p>This code means the type <code>Point<f32></code> will have a method named
|
|||
|
<code>distance_from_origin</code> and other instances of <code>Point<T></code> where <code>T</code> is not of
|
|||
|
type <code>f32</code> will not have this method defined. The method measures how far our
|
|||
|
point is from the point at coordinates (0.0, 0.0) and uses mathematical
|
|||
|
operations that are available only for floating point types.</p>
|
|||
|
<p>Generic type parameters in a struct definition aren’t always the same as those
|
|||
|
you use in that struct’s method signatures. For example, Listing 10-11 defines
|
|||
|
the method <code>mixup</code> on the <code>Point<T, U></code> struct from Listing 10-8. The method
|
|||
|
takes another <code>Point</code> as a parameter, which might have different types from the
|
|||
|
<code>self</code> <code>Point</code> we’re calling <code>mixup</code> on. The method creates a new <code>Point</code>
|
|||
|
instance with the <code>x</code> value from the <code>self</code> <code>Point</code> (of type <code>T</code>) and the <code>y</code>
|
|||
|
value from the passed-in <code>Point</code> (of type <code>W</code>).</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">struct Point<T, U> {
|
|||
|
x: T,
|
|||
|
y: U,
|
|||
|
}
|
|||
|
|
|||
|
impl<T, U> Point<T, U> {
|
|||
|
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W> {
|
|||
|
Point {
|
|||
|
x: self.x,
|
|||
|
y: other.y,
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let p1 = Point { x: 5, y: 10.4 };
|
|||
|
let p2 = Point { x: "Hello", y: 'c'};
|
|||
|
|
|||
|
let p3 = p1.mixup(p2);
|
|||
|
|
|||
|
println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
|
|||
|
}
|
|||
|
</code></pre></pre>
|
|||
|
<p><span class="caption">Listing 10-11: A method that uses different generic types
|
|||
|
from its struct’s definition</span></p>
|
|||
|
<p>In <code>main</code>, we’ve defined a <code>Point</code> that has an <code>i32</code> for <code>x</code> (with value <code>5</code>)
|
|||
|
and an <code>f64</code> for <code>y</code> (with value <code>10.4</code>). The <code>p2</code> variable is a <code>Point</code> struct
|
|||
|
that has a string slice for <code>x</code> (with value <code>"Hello"</code>) and a <code>char</code> for <code>y</code>
|
|||
|
(with value <code>c</code>). Calling <code>mixup</code> on <code>p1</code> with the argument <code>p2</code> gives us <code>p3</code>,
|
|||
|
which will have an <code>i32</code> for <code>x</code>, because <code>x</code> came from <code>p1</code>. The <code>p3</code> variable
|
|||
|
will have a <code>char</code> for <code>y</code>, because <code>y</code> came from <code>p2</code>. The <code>println!</code> macro
|
|||
|
call will print <code>p3.x = 5, p3.y = c</code>.</p>
|
|||
|
<p>The purpose of this example is to demonstrate a situation in which some generic
|
|||
|
parameters are declared with <code>impl</code> and some are declared with the method
|
|||
|
definition. Here, the generic parameters <code>T</code> and <code>U</code> are declared after <code>impl</code>,
|
|||
|
because they go with the struct definition. The generic parameters <code>V</code> and <code>W</code>
|
|||
|
are declared after <code>fn mixup</code>, because they’re only relevant to the method.</p>
|
|||
|
<h3><a class="header" href="#performance-of-code-using-generics" id="performance-of-code-using-generics">Performance of Code Using Generics</a></h3>
|
|||
|
<p>You might be wondering whether there is a runtime cost when you’re using
|
|||
|
generic type parameters. The good news is that Rust implements generics in such
|
|||
|
a way that your code doesn’t run any slower using generic types than it would
|
|||
|
with concrete types.</p>
|
|||
|
<p>Rust accomplishes this by performing monomorphization of the code that is using
|
|||
|
generics at compile time. <em>Monomorphization</em> is the process of turning generic
|
|||
|
code into specific code by filling in the concrete types that are used when
|
|||
|
compiled.</p>
|
|||
|
<p>In this process, the compiler does the opposite of the steps we used to create
|
|||
|
the generic function in Listing 10-5: the compiler looks at all the places
|
|||
|
where generic code is called and generates code for the concrete types the
|
|||
|
generic code is called with.</p>
|
|||
|
<p>Let’s look at how this works with an example that uses the standard library’s
|
|||
|
<code>Option<T></code> enum:</p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">
|
|||
|
<span class="boring">#![allow(unused_variables)]
|
|||
|
</span><span class="boring">fn main() {
|
|||
|
</span>let integer = Some(5);
|
|||
|
let float = Some(5.0);
|
|||
|
<span class="boring">}
|
|||
|
</span></code></pre></pre>
|
|||
|
<p>When Rust compiles this code, it performs monomorphization. During that
|
|||
|
process, the compiler reads the values that have been used in <code>Option<T></code>
|
|||
|
instances and identifies two kinds of <code>Option<T></code>: one is <code>i32</code> and the other
|
|||
|
is <code>f64</code>. As such, it expands the generic definition of <code>Option<T></code> into
|
|||
|
<code>Option_i32</code> and <code>Option_f64</code>, thereby replacing the generic definition with
|
|||
|
the specific ones.</p>
|
|||
|
<p>The monomorphized version of the code looks like the following. The generic
|
|||
|
<code>Option<T></code> is replaced with the specific definitions created by the compiler:</p>
|
|||
|
<p><span class="filename">Filename: src/main.rs</span></p>
|
|||
|
<pre><pre class="playpen"><code class="language-rust">enum Option_i32 {
|
|||
|
Some(i32),
|
|||
|
None,
|
|||
|
}
|
|||
|
|
|||
|
enum Option_f64 {
|
|||
|
Some(f64),
|
|||
|
None,
|
|||
|
}
|
|||
|
|
|||
|
fn main() {
|
|||
|
let integer = Option_i32::Some(5);
|
|||
|
let float = Option_f64::Some(5.0);
|
|||
|
}
|
|||
|
</code></pre></pre>
|
|||
|
<p>Because Rust compiles generic code into code that specifies the type in each
|
|||
|
instance, we pay no runtime cost for using generics. When the code runs, it
|
|||
|
performs just as it would if we had duplicated each definition by hand. The
|
|||
|
process of monomorphization makes Rust’s generics extremely efficient at
|
|||
|
runtime.</p>
|
|||
|
|
|||
|
</main>
|
|||
|
|
|||
|
<nav class="nav-wrapper" aria-label="Page navigation">
|
|||
|
<!-- Mobile navigation buttons -->
|
|||
|
|
|||
|
<a rel="prev" href="ch10-00-generics.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
|
|||
|
<i class="fa fa-angle-left"></i>
|
|||
|
</a>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<a rel="next" href="ch10-02-traits.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
|
|||
|
<i class="fa fa-angle-right"></i>
|
|||
|
</a>
|
|||
|
|
|||
|
|
|||
|
<div style="clear: both"></div>
|
|||
|
</nav>
|
|||
|
</div>
|
|||
|
</div>
|
|||
|
|
|||
|
<nav class="nav-wide-wrapper" aria-label="Page navigation">
|
|||
|
|
|||
|
<a href="ch10-00-generics.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
|
|||
|
<i class="fa fa-angle-left"></i>
|
|||
|
</a>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<a href="ch10-02-traits.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
|
|||
|
<i class="fa fa-angle-right"></i>
|
|||
|
</a>
|
|||
|
|
|||
|
</nav>
|
|||
|
|
|||
|
</div>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<script type="text/javascript">
|
|||
|
window.playpen_copyable = true;
|
|||
|
</script>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
<script src="elasticlunr.min.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
<script src="mark.min.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
<script src="searcher.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
|
|||
|
|
|||
|
<script src="clipboard.min.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
<script src="highlight.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
<script src="book.js" type="text/javascript" charset="utf-8"></script>
|
|||
|
|
|||
|
<!-- Custom JS scripts -->
|
|||
|
|
|||
|
<script type="text/javascript" src="ferris.js"></script>
|
|||
|
|
|||
|
|
|||
|
|
|||
|
|
|||
|
</body>
|
|||
|
</html>
|