870 lines
64 KiB
HTML
870 lines
64 KiB
HTML
<!DOCTYPE HTML>
|
||
<html lang="en" class="sidebar-visible no-js light">
|
||
<head>
|
||
<!-- Book generated using mdBook -->
|
||
<meta charset="UTF-8">
|
||
<title>Validating References with Lifetimes - The Rust Programming Language</title>
|
||
|
||
|
||
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
|
||
<meta name="description" content="">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1">
|
||
<meta name="theme-color" content="#ffffff" />
|
||
|
||
<link rel="shortcut icon" href="favicon.png">
|
||
<link rel="stylesheet" href="css/variables.css">
|
||
<link rel="stylesheet" href="css/general.css">
|
||
<link rel="stylesheet" href="css/chrome.css">
|
||
<link rel="stylesheet" href="css/print.css" media="print">
|
||
|
||
<!-- Fonts -->
|
||
<link rel="stylesheet" href="FontAwesome/css/font-awesome.css">
|
||
<link href="googleFonts/css.css" rel="stylesheet" type="text/css">
|
||
|
||
<!-- Highlight.js Stylesheets -->
|
||
<link rel="stylesheet" href="highlight.css">
|
||
<link rel="stylesheet" href="tomorrow-night.css">
|
||
<link rel="stylesheet" href="ayu-highlight.css">
|
||
|
||
<!-- Custom theme stylesheets -->
|
||
|
||
<link rel="stylesheet" href="ferris.css">
|
||
|
||
<link rel="stylesheet" href="theme/2018-edition.css">
|
||
|
||
|
||
|
||
</head>
|
||
<body>
|
||
<!-- Provide site root to javascript -->
|
||
<script type="text/javascript">
|
||
var path_to_root = "";
|
||
var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "light" : "light";
|
||
</script>
|
||
|
||
<!-- Work around some values being stored in localStorage wrapped in quotes -->
|
||
<script type="text/javascript">
|
||
try {
|
||
var theme = localStorage.getItem('mdbook-theme');
|
||
var sidebar = localStorage.getItem('mdbook-sidebar');
|
||
|
||
if (theme.startsWith('"') && theme.endsWith('"')) {
|
||
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
|
||
}
|
||
|
||
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
|
||
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
|
||
}
|
||
} catch (e) { }
|
||
</script>
|
||
|
||
<!-- Set the theme before any content is loaded, prevents flash -->
|
||
<script type="text/javascript">
|
||
var theme;
|
||
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
|
||
if (theme === null || theme === undefined) { theme = default_theme; }
|
||
var html = document.querySelector('html');
|
||
html.classList.remove('no-js')
|
||
html.classList.remove('light')
|
||
html.classList.add(theme);
|
||
html.classList.add('js');
|
||
</script>
|
||
|
||
<!-- Hide / unhide sidebar before it is displayed -->
|
||
<script type="text/javascript">
|
||
var html = document.querySelector('html');
|
||
var sidebar = 'hidden';
|
||
if (document.body.clientWidth >= 1080) {
|
||
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
|
||
sidebar = sidebar || 'visible';
|
||
}
|
||
html.classList.remove('sidebar-visible');
|
||
html.classList.add("sidebar-" + sidebar);
|
||
</script>
|
||
|
||
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
|
||
<div id="sidebar-scrollbox" class="sidebar-scrollbox">
|
||
<ol class="chapter"><li class="expanded affix "><a href="title-page.html">The Rust Programming Language</a></li><li class="expanded affix "><a href="foreword.html">Foreword</a></li><li class="expanded affix "><a href="ch00-00-introduction.html">Introduction</a></li><li class="expanded "><a href="ch01-00-getting-started.html"><strong aria-hidden="true">1.</strong> Getting Started</a></li><li><ol class="section"><li class="expanded "><a href="ch01-01-installation.html"><strong aria-hidden="true">1.1.</strong> Installation</a></li><li class="expanded "><a href="ch01-02-hello-world.html"><strong aria-hidden="true">1.2.</strong> Hello, World!</a></li><li class="expanded "><a href="ch01-03-hello-cargo.html"><strong aria-hidden="true">1.3.</strong> Hello, Cargo!</a></li></ol></li><li class="expanded "><a href="ch02-00-guessing-game-tutorial.html"><strong aria-hidden="true">2.</strong> Programming a Guessing Game</a></li><li class="expanded "><a href="ch03-00-common-programming-concepts.html"><strong aria-hidden="true">3.</strong> Common Programming Concepts</a></li><li><ol class="section"><li class="expanded "><a href="ch03-01-variables-and-mutability.html"><strong aria-hidden="true">3.1.</strong> Variables and Mutability</a></li><li class="expanded "><a href="ch03-02-data-types.html"><strong aria-hidden="true">3.2.</strong> Data Types</a></li><li class="expanded "><a href="ch03-03-how-functions-work.html"><strong aria-hidden="true">3.3.</strong> Functions</a></li><li class="expanded "><a href="ch03-04-comments.html"><strong aria-hidden="true">3.4.</strong> Comments</a></li><li class="expanded "><a href="ch03-05-control-flow.html"><strong aria-hidden="true">3.5.</strong> Control Flow</a></li></ol></li><li class="expanded "><a href="ch04-00-understanding-ownership.html"><strong aria-hidden="true">4.</strong> Understanding Ownership</a></li><li><ol class="section"><li class="expanded "><a href="ch04-01-what-is-ownership.html"><strong aria-hidden="true">4.1.</strong> What is Ownership?</a></li><li class="expanded "><a href="ch04-02-references-and-borrowing.html"><strong aria-hidden="true">4.2.</strong> References and Borrowing</a></li><li class="expanded "><a href="ch04-03-slices.html"><strong aria-hidden="true">4.3.</strong> The Slice Type</a></li></ol></li><li class="expanded "><a href="ch05-00-structs.html"><strong aria-hidden="true">5.</strong> Using Structs to Structure Related Data</a></li><li><ol class="section"><li class="expanded "><a href="ch05-01-defining-structs.html"><strong aria-hidden="true">5.1.</strong> Defining and Instantiating Structs</a></li><li class="expanded "><a href="ch05-02-example-structs.html"><strong aria-hidden="true">5.2.</strong> An Example Program Using Structs</a></li><li class="expanded "><a href="ch05-03-method-syntax.html"><strong aria-hidden="true">5.3.</strong> Method Syntax</a></li></ol></li><li class="expanded "><a href="ch06-00-enums.html"><strong aria-hidden="true">6.</strong> Enums and Pattern Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch06-01-defining-an-enum.html"><strong aria-hidden="true">6.1.</strong> Defining an Enum</a></li><li class="expanded "><a href="ch06-02-match.html"><strong aria-hidden="true">6.2.</strong> The match Control Flow Operator</a></li><li class="expanded "><a href="ch06-03-if-let.html"><strong aria-hidden="true">6.3.</strong> Concise Control Flow with if let</a></li></ol></li><li class="expanded "><a href="ch07-00-managing-growing-projects-with-packages-crates-and-modules.html"><strong aria-hidden="true">7.</strong> Managing Growing Projects with Packages, Crates, and Modules</a></li><li><ol class="section"><li class="expanded "><a href="ch07-01-packages-and-crates.html"><strong aria-hidden="true">7.1.</strong> Packages and Crates</a></li><li class="expanded "><a href="ch07-02-defining-modules-to-control-scope-and-privacy.html"><strong aria-hidden="true">7.2.</strong> Defining Modules to Control Scope and Privacy</a></li><li class="expanded "><a href="ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html"><strong aria-hidden="true">7.3.</strong> Paths for Referring to an Item in the Module Tree</a></li><li class="expanded "><a href="ch07-04-bringing-paths-into-scope-with-the-use-keyword.html"><strong aria-hidden="true">7.4.</strong> Bringing Paths Into Scope with the use Keyword</a></li><li class="expanded "><a href="ch07-05-separating-modules-into-different-files.html"><strong aria-hidden="true">7.5.</strong> Separating Modules into Different Files</a></li></ol></li><li class="expanded "><a href="ch08-00-common-collections.html"><strong aria-hidden="true">8.</strong> Common Collections</a></li><li><ol class="section"><li class="expanded "><a href="ch08-01-vectors.html"><strong aria-hidden="true">8.1.</strong> Storing Lists of Values with Vectors</a></li><li class="expanded "><a href="ch08-02-strings.html"><strong aria-hidden="true">8.2.</strong> Storing UTF-8 Encoded Text with Strings</a></li><li class="expanded "><a href="ch08-03-hash-maps.html"><strong aria-hidden="true">8.3.</strong> Storing Keys with Associated Values in Hash Maps</a></li></ol></li><li class="expanded "><a href="ch09-00-error-handling.html"><strong aria-hidden="true">9.</strong> Error Handling</a></li><li><ol class="section"><li class="expanded "><a href="ch09-01-unrecoverable-errors-with-panic.html"><strong aria-hidden="true">9.1.</strong> Unrecoverable Errors with panic!</a></li><li class="expanded "><a href="ch09-02-recoverable-errors-with-result.html"><strong aria-hidden="true">9.2.</strong> Recoverable Errors with Result</a></li><li class="expanded "><a href="ch09-03-to-panic-or-not-to-panic.html"><strong aria-hidden="true">9.3.</strong> To panic! or Not To panic!</a></li></ol></li><li class="expanded "><a href="ch10-00-generics.html"><strong aria-hidden="true">10.</strong> Generic Types, Traits, and Lifetimes</a></li><li><ol class="section"><li class="expanded "><a href="ch10-01-syntax.html"><strong aria-hidden="true">10.1.</strong> Generic Data Types</a></li><li class="expanded "><a href="ch10-02-traits.html"><strong aria-hidden="true">10.2.</strong> Traits: Defining Shared Behavior</a></li><li class="expanded "><a href="ch10-03-lifetime-syntax.html" class="active"><strong aria-hidden="true">10.3.</strong> Validating References with Lifetimes</a></li></ol></li><li class="expanded "><a href="ch11-00-testing.html"><strong aria-hidden="true">11.</strong> Writing Automated Tests</a></li><li><ol class="section"><li class="expanded "><a href="ch11-01-writing-tests.html"><strong aria-hidden="true">11.1.</strong> How to Write Tests</a></li><li class="expanded "><a href="ch11-02-running-tests.html"><strong aria-hidden="true">11.2.</strong> Controlling How Tests Are Run</a></li><li class="expanded "><a href="ch11-03-test-organization.html"><strong aria-hidden="true">11.3.</strong> Test Organization</a></li></ol></li><li class="expanded "><a href="ch12-00-an-io-project.html"><strong aria-hidden="true">12.</strong> An I/O Project: Building a Command Line Program</a></li><li><ol class="section"><li class="expanded "><a href="ch12-01-accepting-command-line-arguments.html"><strong aria-hidden="true">12.1.</strong> Accepting Command Line Arguments</a></li><li class="expanded "><a href="ch12-02-reading-a-file.html"><strong aria-hidden="true">12.2.</strong> Reading a File</a></li><li class="expanded "><a href="ch12-03-improving-error-handling-and-modularity.html"><strong aria-hidden="true">12.3.</strong> Refactoring to Improve Modularity and Error Handling</a></li><li class="expanded "><a href="ch12-04-testing-the-librarys-functionality.html"><strong aria-hidden="true">12.4.</strong> Developing the Library’s Functionality with Test Driven Development</a></li><li class="expanded "><a href="ch12-05-working-with-environment-variables.html"><strong aria-hidden="true">12.5.</strong> Working with Environment Variables</a></li><li class="expanded "><a href="ch12-06-writing-to-stderr-instead-of-stdout.html"><strong aria-hidden="true">12.6.</strong> Writing Error Messages to Standard Error Instead of Standard Output</a></li></ol></li><li class="expanded "><a href="ch13-00-functional-features.html"><strong aria-hidden="true">13.</strong> Functional Language Features: Iterators and Closures</a></li><li><ol class="section"><li class="expanded "><a href="ch13-01-closures.html"><strong aria-hidden="true">13.1.</strong> Closures: Anonymous Functions that Can Capture Their Environment</a></li><li class="expanded "><a href="ch13-02-iterators.html"><strong aria-hidden="true">13.2.</strong> Processing a Series of Items with Iterators</a></li><li class="expanded "><a href="ch13-03-improving-our-io-project.html"><strong aria-hidden="true">13.3.</strong> Improving Our I/O Project</a></li><li class="expanded "><a href="ch13-04-performance.html"><strong aria-hidden="true">13.4.</strong> Comparing Performance: Loops vs. Iterators</a></li></ol></li><li class="expanded "><a href="ch14-00-more-about-cargo.html"><strong aria-hidden="true">14.</strong> More about Cargo and Crates.io</a></li><li><ol class="section"><li class="expanded "><a href="ch14-01-release-profiles.html"><strong aria-hidden="true">14.1.</strong> Customizing Builds with Release Profiles</a></li><li class="expanded "><a href="ch14-02-publishing-to-crates-io.html"><strong aria-hidden="true">14.2.</strong> Publishing a Crate to Crates.io</a></li><li class="expanded "><a href="ch14-03-cargo-workspaces.html"><strong aria-hidden="true">14.3.</strong> Cargo Workspaces</a></li><li class="expanded "><a href="ch14-04-installing-binaries.html"><strong aria-hidden="true">14.4.</strong> Installing Binaries from Crates.io with cargo install</a></li><li class="expanded "><a href="ch14-05-extending-cargo.html"><strong aria-hidden="true">14.5.</strong> Extending Cargo with Custom Commands</a></li></ol></li><li class="expanded "><a href="ch15-00-smart-pointers.html"><strong aria-hidden="true">15.</strong> Smart Pointers</a></li><li><ol class="section"><li class="expanded "><a href="ch15-01-box.html"><strong aria-hidden="true">15.1.</strong> Using Box<T> to Point to Data on the Heap</a></li><li class="expanded "><a href="ch15-02-deref.html"><strong aria-hidden="true">15.2.</strong> Treating Smart Pointers Like Regular References with the Deref Trait</a></li><li class="expanded "><a href="ch15-03-drop.html"><strong aria-hidden="true">15.3.</strong> Running Code on Cleanup with the Drop Trait</a></li><li class="expanded "><a href="ch15-04-rc.html"><strong aria-hidden="true">15.4.</strong> Rc<T>, the Reference Counted Smart Pointer</a></li><li class="expanded "><a href="ch15-05-interior-mutability.html"><strong aria-hidden="true">15.5.</strong> RefCell<T> and the Interior Mutability Pattern</a></li><li class="expanded "><a href="ch15-06-reference-cycles.html"><strong aria-hidden="true">15.6.</strong> Reference Cycles Can Leak Memory</a></li></ol></li><li class="expanded "><a href="ch16-00-concurrency.html"><strong aria-hidden="true">16.</strong> Fearless Concurrency</a></li><li><ol class="section"><li class="expanded "><a href="ch16-01-threads.html"><strong aria-hidden="true">16.1.</strong> Using Threads to Run Code Simultaneously</a></li><li class="expanded "><a href="ch16-02-message-passing.html"><strong aria-hidden="true">16.2.</strong> Using Message Passing to Transfer Data Between Threads</a></li><li class="expanded "><a href="ch16-03-shared-state.html"><strong aria-hidden="true">16.3.</strong> Shared-State Concurrency</a></li><li class="expanded "><a href="ch16-04-extensible-concurrency-sync-and-send.html"><strong aria-hidden="true">16.4.</strong> Extensible Concurrency with the Sync and Send Traits</a></li></ol></li><li class="expanded "><a href="ch17-00-oop.html"><strong aria-hidden="true">17.</strong> Object Oriented Programming Features of Rust</a></li><li><ol class="section"><li class="expanded "><a href="ch17-01-what-is-oo.html"><strong aria-hidden="true">17.1.</strong> Characteristics of Object-Oriented Languages</a></li><li class="expanded "><a href="ch17-02-trait-objects.html"><strong aria-hidden="true">17.2.</strong> Using Trait Objects That Allow for Values of Different Types</a></li><li class="expanded "><a href="ch17-03-oo-design-patterns.html"><strong aria-hidden="true">17.3.</strong> Implementing an Object-Oriented Design Pattern</a></li></ol></li><li class="expanded "><a href="ch18-00-patterns.html"><strong aria-hidden="true">18.</strong> Patterns and Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch18-01-all-the-places-for-patterns.html"><strong aria-hidden="true">18.1.</strong> All the Places Patterns Can Be Used</a></li><li class="expanded "><a href="ch18-02-refutability.html"><strong aria-hidden="true">18.2.</strong> Refutability: Whether a Pattern Might Fail to Match</a></li><li class="expanded "><a href="ch18-03-pattern-syntax.html"><strong aria-hidden="true">18.3.</strong> Pattern Syntax</a></li></ol></li><li class="expanded "><a href="ch19-00-advanced-features.html"><strong aria-hidden="true">19.</strong> Advanced Features</a></li><li><ol class="section"><li class="expanded "><a href="ch19-01-unsafe-rust.html"><strong aria-hidden="true">19.1.</strong> Unsafe Rust</a></li><li class="expanded "><a href="ch19-03-advanced-traits.html"><strong aria-hidden="true">19.2.</strong> Advanced Traits</a></li><li class="expanded "><a href="ch19-04-advanced-types.html"><strong aria-hidden="true">19.3.</strong> Advanced Types</a></li><li class="expanded "><a href="ch19-05-advanced-functions-and-closures.html"><strong aria-hidden="true">19.4.</strong> Advanced Functions and Closures</a></li><li class="expanded "><a href="ch19-06-macros.html"><strong aria-hidden="true">19.5.</strong> Macros</a></li></ol></li><li class="expanded "><a href="ch20-00-final-project-a-web-server.html"><strong aria-hidden="true">20.</strong> Final Project: Building a Multithreaded Web Server</a></li><li><ol class="section"><li class="expanded "><a href="ch20-01-single-threaded.html"><strong aria-hidden="true">20.1.</strong> Building a Single-Threaded Web Server</a></li><li class="expanded "><a href="ch20-02-multithreaded.html"><strong aria-hidden="true">20.2.</strong> Turning Our Single-Threaded Server into a Multithreaded Server</a></li><li class="expanded "><a href="ch20-03-graceful-shutdown-and-cleanup.html"><strong aria-hidden="true">20.3.</strong> Graceful Shutdown and Cleanup</a></li></ol></li><li class="expanded "><a href="appendix-00.html"><strong aria-hidden="true">21.</strong> Appendix</a></li><li><ol class="section"><li class="expanded "><a href="appendix-01-keywords.html"><strong aria-hidden="true">21.1.</strong> A - Keywords</a></li><li class="expanded "><a href="appendix-02-operators.html"><strong aria-hidden="true">21.2.</strong> B - Operators and Symbols</a></li><li class="expanded "><a href="appendix-03-derivable-traits.html"><strong aria-hidden="true">21.3.</strong> C - Derivable Traits</a></li><li class="expanded "><a href="appendix-04-useful-development-tools.html"><strong aria-hidden="true">21.4.</strong> D - Useful Development Tools</a></li><li class="expanded "><a href="appendix-05-editions.html"><strong aria-hidden="true">21.5.</strong> E - Editions</a></li><li class="expanded "><a href="appendix-06-translation.html"><strong aria-hidden="true">21.6.</strong> F - Translations of the Book</a></li><li class="expanded "><a href="appendix-07-nightly-rust.html"><strong aria-hidden="true">21.7.</strong> G - How Rust is Made and “Nightly Rust”</a></li></ol></li></ol>
|
||
</div>
|
||
<div id="sidebar-resize-handle" class="sidebar-resize-handle"></div>
|
||
</nav>
|
||
|
||
<div id="page-wrapper" class="page-wrapper">
|
||
|
||
<div class="page">
|
||
|
||
<div id="menu-bar" class="menu-bar">
|
||
<div id="menu-bar-sticky-container">
|
||
<div class="left-buttons">
|
||
<button id="sidebar-toggle" class="icon-button" type="button" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
|
||
<i class="fa fa-bars"></i>
|
||
</button>
|
||
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
|
||
<i class="fa fa-paint-brush"></i>
|
||
</button>
|
||
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
|
||
<li role="none"><button role="menuitem" class="theme" id="light">Light (default)</button></li>
|
||
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
|
||
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
|
||
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
|
||
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
|
||
</ul>
|
||
|
||
<button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
|
||
<i class="fa fa-search"></i>
|
||
</button>
|
||
|
||
</div>
|
||
|
||
<h1 class="menu-title">The Rust Programming Language</h1>
|
||
|
||
<div class="right-buttons">
|
||
<a href="print.html" title="Print this book" aria-label="Print this book">
|
||
<i id="print-button" class="fa fa-print"></i>
|
||
</a>
|
||
|
||
</div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<div id="search-wrapper" class="hidden">
|
||
<form id="searchbar-outer" class="searchbar-outer">
|
||
<input type="search" name="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
|
||
</form>
|
||
<div id="searchresults-outer" class="searchresults-outer hidden">
|
||
<div id="searchresults-header" class="searchresults-header"></div>
|
||
<ul id="searchresults">
|
||
</ul>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
|
||
<script type="text/javascript">
|
||
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
|
||
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
|
||
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
|
||
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
|
||
});
|
||
</script>
|
||
|
||
<div id="content" class="content">
|
||
<main>
|
||
<h2><a class="header" href="#validating-references-with-lifetimes" id="validating-references-with-lifetimes">Validating References with Lifetimes</a></h2>
|
||
<p>One detail we didn’t discuss in the <a href="ch04-02-references-and-borrowing.html#references-and-borrowing">“References and
|
||
Borrowing”</a><!-- ignore --> section in Chapter 4 is
|
||
that every reference in Rust has a <em>lifetime</em>, which is the scope for which
|
||
that reference is valid. Most of the time, lifetimes are implicit and
|
||
inferred, just like most of the time, types are inferred. We must annotate
|
||
types when multiple types are possible. In a similar way, we must annotate
|
||
lifetimes when the lifetimes of references could be related in a few different
|
||
ways. Rust requires us to annotate the relationships using generic lifetime
|
||
parameters to ensure the actual references used at runtime will definitely be
|
||
valid.</p>
|
||
<p>The concept of lifetimes is somewhat different from tools in other programming
|
||
languages, arguably making lifetimes Rust’s most distinctive feature. Although
|
||
we won’t cover lifetimes in their entirety in this chapter, we’ll discuss
|
||
common ways you might encounter lifetime syntax so you can become familiar with
|
||
the concepts.</p>
|
||
<h3><a class="header" href="#preventing-dangling-references-with-lifetimes" id="preventing-dangling-references-with-lifetimes">Preventing Dangling References with Lifetimes</a></h3>
|
||
<p>The main aim of lifetimes is to prevent dangling references, which cause a
|
||
program to reference data other than the data it’s intended to reference.
|
||
Consider the program in Listing 10-17, which has an outer scope and an inner
|
||
scope.</p>
|
||
<pre><code class="language-rust ignore does_not_compile">{
|
||
let r;
|
||
|
||
{
|
||
let x = 5;
|
||
r = &x;
|
||
}
|
||
|
||
println!("r: {}", r);
|
||
}
|
||
</code></pre>
|
||
<p><span class="caption">Listing 10-17: An attempt to use a reference whose value
|
||
has gone out of scope</span></p>
|
||
<blockquote>
|
||
<p>Note: The examples in Listings 10-17, 10-18, and 10-24 declare variables
|
||
without giving them an initial value, so the variable name exists in the
|
||
outer scope. At first glance, this might appear to be in conflict with Rust’s
|
||
having no null values. However, if we try to use a variable before giving it
|
||
a value, we’ll get a compile-time error, which shows that Rust indeed does
|
||
not allow null values.</p>
|
||
</blockquote>
|
||
<p>The outer scope declares a variable named <code>r</code> with no initial value, and the
|
||
inner scope declares a variable named <code>x</code> with the initial value of 5. Inside
|
||
the inner scope, we attempt to set the value of <code>r</code> as a reference to <code>x</code>. Then
|
||
the inner scope ends, and we attempt to print the value in <code>r</code>. This code won’t
|
||
compile because the value <code>r</code> is referring to has gone out of scope before we
|
||
try to use it. Here is the error message:</p>
|
||
<pre><code class="language-text">error[E0597]: `x` does not live long enough
|
||
--> src/main.rs:7:5
|
||
|
|
||
6 | r = &x;
|
||
| - borrow occurs here
|
||
7 | }
|
||
| ^ `x` dropped here while still borrowed
|
||
...
|
||
10 | }
|
||
| - borrowed value needs to live until here
|
||
</code></pre>
|
||
<p>The variable <code>x</code> doesn’t “live long enough.” The reason is that <code>x</code> will be out
|
||
of scope when the inner scope ends on line 7. But <code>r</code> is still valid for the
|
||
outer scope; because its scope is larger, we say that it “lives longer.” If
|
||
Rust allowed this code to work, <code>r</code> would be referencing memory that was
|
||
deallocated when <code>x</code> went out of scope, and anything we tried to do with <code>r</code>
|
||
wouldn’t work correctly. So how does Rust determine that this code is invalid?
|
||
It uses a borrow checker.</p>
|
||
<h3><a class="header" href="#the-borrow-checker" id="the-borrow-checker">The Borrow Checker</a></h3>
|
||
<p>The Rust compiler has a <em>borrow checker</em> that compares scopes to determine
|
||
whether all borrows are valid. Listing 10-18 shows the same code as Listing
|
||
10-17 but with annotations showing the lifetimes of the variables.</p>
|
||
<pre><code class="language-rust ignore does_not_compile">{
|
||
let r; // ---------+-- 'a
|
||
// |
|
||
{ // |
|
||
let x = 5; // -+-- 'b |
|
||
r = &x; // | |
|
||
} // -+ |
|
||
// |
|
||
println!("r: {}", r); // |
|
||
} // ---------+
|
||
</code></pre>
|
||
<p><span class="caption">Listing 10-18: Annotations of the lifetimes of <code>r</code> and
|
||
<code>x</code>, named <code>'a</code> and <code>'b</code>, respectively</span></p>
|
||
<p>Here, we’ve annotated the lifetime of <code>r</code> with <code>'a</code> and the lifetime of <code>x</code>
|
||
with <code>'b</code>. As you can see, the inner <code>'b</code> block is much smaller than the outer
|
||
<code>'a</code> lifetime block. At compile time, Rust compares the size of the two
|
||
lifetimes and sees that <code>r</code> has a lifetime of <code>'a</code> but that it refers to memory
|
||
with a lifetime of <code>'b</code>. The program is rejected because <code>'b</code> is shorter than
|
||
<code>'a</code>: the subject of the reference doesn’t live as long as the reference.</p>
|
||
<p>Listing 10-19 fixes the code so it doesn’t have a dangling reference and
|
||
compiles without any errors.</p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>{
|
||
let x = 5; // ----------+-- 'b
|
||
// |
|
||
let r = &x; // --+-- 'a |
|
||
// | |
|
||
println!("r: {}", r); // | |
|
||
// --+ |
|
||
} // ----------+
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p><span class="caption">Listing 10-19: A valid reference because the data has a
|
||
longer lifetime than the reference</span></p>
|
||
<p>Here, <code>x</code> has the lifetime <code>'b</code>, which in this case is larger than <code>'a</code>. This
|
||
means <code>r</code> can reference <code>x</code> because Rust knows that the reference in <code>r</code> will
|
||
always be valid while <code>x</code> is valid.</p>
|
||
<p>Now that you know where the lifetimes of references are and how Rust analyzes
|
||
lifetimes to ensure references will always be valid, let’s explore generic
|
||
lifetimes of parameters and return values in the context of functions.</p>
|
||
<h3><a class="header" href="#generic-lifetimes-in-functions" id="generic-lifetimes-in-functions">Generic Lifetimes in Functions</a></h3>
|
||
<p>Let’s write a function that returns the longer of two string slices. This
|
||
function will take two string slices and return a string slice. After we’ve
|
||
implemented the <code>longest</code> function, the code in Listing 10-20 should print <code>The longest string is abcd</code>.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><code class="language-rust ignore">fn main() {
|
||
let string1 = String::from("abcd");
|
||
let string2 = "xyz";
|
||
|
||
let result = longest(string1.as_str(), string2);
|
||
println!("The longest string is {}", result);
|
||
}
|
||
</code></pre>
|
||
<p><span class="caption">Listing 10-20: A <code>main</code> function that calls the <code>longest</code>
|
||
function to find the longer of two string slices</span></p>
|
||
<p>Note that we want the function to take string slices, which are references,
|
||
because we don’t want the <code>longest</code> function to take ownership of its
|
||
parameters. We want to allow the function to accept slices of a <code>String</code> (the
|
||
type stored in the variable <code>string1</code>) as well as string literals (which is
|
||
what variable <code>string2</code> contains).</p>
|
||
<p>Refer to the <a href="ch04-03-slices.html#string-slices-as-parameters">“String Slices as Parameters”</a><!--
|
||
ignore --> section in Chapter 4 for more discussion about why the parameters we
|
||
use in Listing 10-20 are the ones we want.</p>
|
||
<p>If we try to implement the <code>longest</code> function as shown in Listing 10-21, it
|
||
won’t compile.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><code class="language-rust ignore does_not_compile">fn longest(x: &str, y: &str) -> &str {
|
||
if x.len() > y.len() {
|
||
x
|
||
} else {
|
||
y
|
||
}
|
||
}
|
||
</code></pre>
|
||
<p><span class="caption">Listing 10-21: An implementation of the <code>longest</code>
|
||
function that returns the longer of two string slices but does not yet
|
||
compile</span></p>
|
||
<p>Instead, we get the following error that talks about lifetimes:</p>
|
||
<pre><code class="language-text">error[E0106]: missing lifetime specifier
|
||
--> src/main.rs:1:33
|
||
|
|
||
1 | fn longest(x: &str, y: &str) -> &str {
|
||
| ^ expected lifetime parameter
|
||
|
|
||
= help: this function's return type contains a borrowed value, but the
|
||
signature does not say whether it is borrowed from `x` or `y`
|
||
</code></pre>
|
||
<p>The help text reveals that the return type needs a generic lifetime parameter
|
||
on it because Rust can’t tell whether the reference being returned refers to
|
||
<code>x</code> or <code>y</code>. Actually, we don’t know either, because the <code>if</code> block in the body
|
||
of this function returns a reference to <code>x</code> and the <code>else</code> block returns a
|
||
reference to <code>y</code>!</p>
|
||
<p>When we’re defining this function, we don’t know the concrete values that will
|
||
be passed into this function, so we don’t know whether the <code>if</code> case or the
|
||
<code>else</code> case will execute. We also don’t know the concrete lifetimes of the
|
||
references that will be passed in, so we can’t look at the scopes as we did in
|
||
Listings 10-18 and 10-19 to determine whether the reference we return will
|
||
always be valid. The borrow checker can’t determine this either, because it
|
||
doesn’t know how the lifetimes of <code>x</code> and <code>y</code> relate to the lifetime of the
|
||
return value. To fix this error, we’ll add generic lifetime parameters that
|
||
define the relationship between the references so the borrow checker can
|
||
perform its analysis.</p>
|
||
<h3><a class="header" href="#lifetime-annotation-syntax" id="lifetime-annotation-syntax">Lifetime Annotation Syntax</a></h3>
|
||
<p>Lifetime annotations don’t change how long any of the references live. Just
|
||
as functions can accept any type when the signature specifies a generic type
|
||
parameter, functions can accept references with any lifetime by specifying a
|
||
generic lifetime parameter. Lifetime annotations describe the relationships of
|
||
the lifetimes of multiple references to each other without affecting the
|
||
lifetimes.</p>
|
||
<p>Lifetime annotations have a slightly unusual syntax: the names of lifetime
|
||
parameters must start with an apostrophe (<code>'</code>) and are usually all lowercase and
|
||
very short, like generic types. Most people use the name <code>'a</code>. We place
|
||
lifetime parameter annotations after the <code>&</code> of a reference, using a space to
|
||
separate the annotation from the reference’s type.</p>
|
||
<p>Here are some examples: a reference to an <code>i32</code> without a lifetime parameter, a
|
||
reference to an <code>i32</code> that has a lifetime parameter named <code>'a</code>, and a mutable
|
||
reference to an <code>i32</code> that also has the lifetime <code>'a</code>.</p>
|
||
<pre><code class="language-rust ignore">&i32 // a reference
|
||
&'a i32 // a reference with an explicit lifetime
|
||
&'a mut i32 // a mutable reference with an explicit lifetime
|
||
</code></pre>
|
||
<p>One lifetime annotation by itself doesn’t have much meaning, because the
|
||
annotations are meant to tell Rust how generic lifetime parameters of multiple
|
||
references relate to each other. For example, let’s say we have a function with
|
||
the parameter <code>first</code> that is a reference to an <code>i32</code> with lifetime <code>'a</code>. The
|
||
function also has another parameter named <code>second</code> that is another reference to
|
||
an <code>i32</code> that also has the lifetime <code>'a</code>. The lifetime annotations indicate
|
||
that the references <code>first</code> and <code>second</code> must both live as long as that generic
|
||
lifetime.</p>
|
||
<h3><a class="header" href="#lifetime-annotations-in-function-signatures" id="lifetime-annotations-in-function-signatures">Lifetime Annotations in Function Signatures</a></h3>
|
||
<p>Now let’s examine lifetime annotations in the context of the <code>longest</code>
|
||
function. As with generic type parameters, we need to declare generic lifetime
|
||
parameters inside angle brackets between the function name and the parameter
|
||
list. The constraint we want to express in this signature is that all the
|
||
references in the parameters and the return value must have the same lifetime.
|
||
We’ll name the lifetime <code>'a</code> and then add it to each reference, as shown in
|
||
Listing 10-22.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
|
||
if x.len() > y.len() {
|
||
x
|
||
} else {
|
||
y
|
||
}
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p><span class="caption">Listing 10-22: The <code>longest</code> function definition
|
||
specifying that all the references in the signature must have the same lifetime
|
||
<code>'a</code></span></p>
|
||
<p>This code should compile and produce the result we want when we use it with the
|
||
<code>main</code> function in Listing 10-20.</p>
|
||
<p>The function signature now tells Rust that for some lifetime <code>'a</code>, the function
|
||
takes two parameters, both of which are string slices that live at least as
|
||
long as lifetime <code>'a</code>. The function signature also tells Rust that the string
|
||
slice returned from the function will live at least as long as lifetime <code>'a</code>.
|
||
In practice, it means that the lifetime of the reference returned by the
|
||
<code>longest</code> function is the same as the smaller of the lifetimes of the
|
||
references passed in. These constraints are what we want Rust to enforce.
|
||
Remember, when we specify the lifetime parameters in this function signature,
|
||
we’re not changing the lifetimes of any values passed in or returned. Rather,
|
||
we’re specifying that the borrow checker should reject any values that don’t
|
||
adhere to these constraints. Note that the <code>longest</code> function doesn’t need to
|
||
know exactly how long <code>x</code> and <code>y</code> will live, only that some scope can be
|
||
substituted for <code>'a</code> that will satisfy this signature.</p>
|
||
<p>When annotating lifetimes in functions, the annotations go in the function
|
||
signature, not in the function body. Rust can analyze the code within the
|
||
function without any help. However, when a function has references to or from
|
||
code outside that function, it becomes almost impossible for Rust to figure out
|
||
the lifetimes of the parameters or return values on its own. The lifetimes
|
||
might be different each time the function is called. This is why we need to
|
||
annotate the lifetimes manually.</p>
|
||
<p>When we pass concrete references to <code>longest</code>, the concrete lifetime that is
|
||
substituted for <code>'a</code> is the part of the scope of <code>x</code> that overlaps with the
|
||
scope of <code>y</code>. In other words, the generic lifetime <code>'a</code> will get the concrete
|
||
lifetime that is equal to the smaller of the lifetimes of <code>x</code> and <code>y</code>. Because
|
||
we’ve annotated the returned reference with the same lifetime parameter <code>'a</code>,
|
||
the returned reference will also be valid for the length of the smaller of the
|
||
lifetimes of <code>x</code> and <code>y</code>.</p>
|
||
<p>Let’s look at how the lifetime annotations restrict the <code>longest</code> function by
|
||
passing in references that have different concrete lifetimes. Listing 10-23 is
|
||
a straightforward example.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><pre class="playpen"><code class="language-rust"><span class="boring">fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
|
||
</span><span class="boring"> if x.len() > y.len() {
|
||
</span><span class="boring"> x
|
||
</span><span class="boring"> } else {
|
||
</span><span class="boring"> y
|
||
</span><span class="boring"> }
|
||
</span><span class="boring">}
|
||
</span><span class="boring">
|
||
</span>fn main() {
|
||
let string1 = String::from("long string is long");
|
||
|
||
{
|
||
let string2 = String::from("xyz");
|
||
let result = longest(string1.as_str(), string2.as_str());
|
||
println!("The longest string is {}", result);
|
||
}
|
||
}
|
||
</code></pre></pre>
|
||
<p><span class="caption">Listing 10-23: Using the <code>longest</code> function with
|
||
references to <code>String</code> values that have different concrete lifetimes</span></p>
|
||
<p>In this example, <code>string1</code> is valid until the end of the outer scope, <code>string2</code>
|
||
is valid until the end of the inner scope, and <code>result</code> references something
|
||
that is valid until the end of the inner scope. Run this code, and you’ll see
|
||
that the borrow checker approves of this code; it will compile and print <code>The longest string is long string is long</code>.</p>
|
||
<p>Next, let’s try an example that shows that the lifetime of the reference in
|
||
<code>result</code> must be the smaller lifetime of the two arguments. We’ll move the
|
||
declaration of the <code>result</code> variable outside the inner scope but leave the
|
||
assignment of the value to the <code>result</code> variable inside the scope with
|
||
<code>string2</code>. Then we’ll move the <code>println!</code> that uses <code>result</code> outside the inner
|
||
scope, after the inner scope has ended. The code in Listing 10-24 will not
|
||
compile.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><code class="language-rust ignore does_not_compile">fn main() {
|
||
let string1 = String::from("long string is long");
|
||
let result;
|
||
{
|
||
let string2 = String::from("xyz");
|
||
result = longest(string1.as_str(), string2.as_str());
|
||
}
|
||
println!("The longest string is {}", result);
|
||
}
|
||
</code></pre>
|
||
<p><span class="caption">Listing 10-24: Attempting to use <code>result</code> after <code>string2</code>
|
||
has gone out of scope</span></p>
|
||
<p>When we try to compile this code, we’ll get this error:</p>
|
||
<pre><code class="language-text">error[E0597]: `string2` does not live long enough
|
||
--> src/main.rs:15:5
|
||
|
|
||
14 | result = longest(string1.as_str(), string2.as_str());
|
||
| ------- borrow occurs here
|
||
15 | }
|
||
| ^ `string2` dropped here while still borrowed
|
||
16 | println!("The longest string is {}", result);
|
||
17 | }
|
||
| - borrowed value needs to live until here
|
||
</code></pre>
|
||
<p>The error shows that for <code>result</code> to be valid for the <code>println!</code> statement,
|
||
<code>string2</code> would need to be valid until the end of the outer scope. Rust knows
|
||
this because we annotated the lifetimes of the function parameters and return
|
||
values using the same lifetime parameter <code>'a</code>.</p>
|
||
<p>As humans, we can look at this code and see that <code>string1</code> is longer than
|
||
<code>string2</code> and therefore <code>result</code> will contain a reference to <code>string1</code>.
|
||
Because <code>string1</code> has not gone out of scope yet, a reference to <code>string1</code> will
|
||
still be valid for the <code>println!</code> statement. However, the compiler can’t see
|
||
that the reference is valid in this case. We’ve told Rust that the lifetime of
|
||
the reference returned by the <code>longest</code> function is the same as the smaller of
|
||
the lifetimes of the references passed in. Therefore, the borrow checker
|
||
disallows the code in Listing 10-24 as possibly having an invalid reference.</p>
|
||
<p>Try designing more experiments that vary the values and lifetimes of the
|
||
references passed in to the <code>longest</code> function and how the returned reference
|
||
is used. Make hypotheses about whether or not your experiments will pass the
|
||
borrow checker before you compile; then check to see if you’re right!</p>
|
||
<h3><a class="header" href="#thinking-in-terms-of-lifetimes" id="thinking-in-terms-of-lifetimes">Thinking in Terms of Lifetimes</a></h3>
|
||
<p>The way in which you need to specify lifetime parameters depends on what your
|
||
function is doing. For example, if we changed the implementation of the
|
||
<code>longest</code> function to always return the first parameter rather than the longest
|
||
string slice, we wouldn’t need to specify a lifetime on the <code>y</code> parameter. The
|
||
following code will compile:</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>fn longest<'a>(x: &'a str, y: &str) -> &'a str {
|
||
x
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p>In this example, we’ve specified a lifetime parameter <code>'a</code> for the parameter
|
||
<code>x</code> and the return type, but not for the parameter <code>y</code>, because the lifetime of
|
||
<code>y</code> does not have any relationship with the lifetime of <code>x</code> or the return value.</p>
|
||
<p>When returning a reference from a function, the lifetime parameter for the
|
||
return type needs to match the lifetime parameter for one of the parameters. If
|
||
the reference returned does <em>not</em> refer to one of the parameters, it must refer
|
||
to a value created within this function, which would be a dangling reference
|
||
because the value will go out of scope at the end of the function. Consider
|
||
this attempted implementation of the <code>longest</code> function that won’t compile:</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><code class="language-rust ignore does_not_compile">fn longest<'a>(x: &str, y: &str) -> &'a str {
|
||
let result = String::from("really long string");
|
||
result.as_str()
|
||
}
|
||
</code></pre>
|
||
<p>Here, even though we’ve specified a lifetime parameter <code>'a</code> for the return
|
||
type, this implementation will fail to compile because the return value
|
||
lifetime is not related to the lifetime of the parameters at all. Here is the
|
||
error message we get:</p>
|
||
<pre><code class="language-text">error[E0597]: `result` does not live long enough
|
||
--> src/main.rs:3:5
|
||
|
|
||
3 | result.as_str()
|
||
| ^^^^^^ does not live long enough
|
||
4 | }
|
||
| - borrowed value only lives until here
|
||
|
|
||
note: borrowed value must be valid for the lifetime 'a as defined on the
|
||
function body at 1:1...
|
||
--> src/main.rs:1:1
|
||
|
|
||
1 | / fn longest<'a>(x: &str, y: &str) -> &'a str {
|
||
2 | | let result = String::from("really long string");
|
||
3 | | result.as_str()
|
||
4 | | }
|
||
| |_^
|
||
</code></pre>
|
||
<p>The problem is that <code>result</code> goes out of scope and gets cleaned up at the end
|
||
of the <code>longest</code> function. We’re also trying to return a reference to <code>result</code>
|
||
from the function. There is no way we can specify lifetime parameters that
|
||
would change the dangling reference, and Rust won’t let us create a dangling
|
||
reference. In this case, the best fix would be to return an owned data type
|
||
rather than a reference so the calling function is then responsible for
|
||
cleaning up the value.</p>
|
||
<p>Ultimately, lifetime syntax is about connecting the lifetimes of various
|
||
parameters and return values of functions. Once they’re connected, Rust has
|
||
enough information to allow memory-safe operations and disallow operations that
|
||
would create dangling pointers or otherwise violate memory safety.</p>
|
||
<h3><a class="header" href="#lifetime-annotations-in-struct-definitions" id="lifetime-annotations-in-struct-definitions">Lifetime Annotations in Struct Definitions</a></h3>
|
||
<p>So far, we’ve only defined structs to hold owned types. It’s possible for
|
||
structs to hold references, but in that case we would need to add a lifetime
|
||
annotation on every reference in the struct’s definition. Listing 10-25 has a
|
||
struct named <code>ImportantExcerpt</code> that holds a string slice.</p>
|
||
<p><span class="filename">Filename: src/main.rs</span></p>
|
||
<pre><pre class="playpen"><code class="language-rust">struct ImportantExcerpt<'a> {
|
||
part: &'a str,
|
||
}
|
||
|
||
fn main() {
|
||
let novel = String::from("Call me Ishmael. Some years ago...");
|
||
let first_sentence = novel.split('.')
|
||
.next()
|
||
.expect("Could not find a '.'");
|
||
let i = ImportantExcerpt { part: first_sentence };
|
||
}
|
||
</code></pre></pre>
|
||
<p><span class="caption">Listing 10-25: A struct that holds a reference, so its
|
||
definition needs a lifetime annotation</span></p>
|
||
<p>This struct has one field, <code>part</code>, that holds a string slice, which is a
|
||
reference. As with generic data types, we declare the name of the generic
|
||
lifetime parameter inside angle brackets after the name of the struct so we can
|
||
use the lifetime parameter in the body of the struct definition. This
|
||
annotation means an instance of <code>ImportantExcerpt</code> can’t outlive the reference
|
||
it holds in its <code>part</code> field.</p>
|
||
<p>The <code>main</code> function here creates an instance of the <code>ImportantExcerpt</code> struct
|
||
that holds a reference to the first sentence of the <code>String</code> owned by the
|
||
variable <code>novel</code>. The data in <code>novel</code> exists before the <code>ImportantExcerpt</code>
|
||
instance is created. In addition, <code>novel</code> doesn’t go out of scope until after
|
||
the <code>ImportantExcerpt</code> goes out of scope, so the reference in the
|
||
<code>ImportantExcerpt</code> instance is valid.</p>
|
||
<h3><a class="header" href="#lifetime-elision" id="lifetime-elision">Lifetime Elision</a></h3>
|
||
<p>You’ve learned that every reference has a lifetime and that you need to specify
|
||
lifetime parameters for functions or structs that use references. However, in
|
||
Chapter 4 we had a function in Listing 4-9, which is shown again in Listing
|
||
10-26, that compiled without lifetime annotations.</p>
|
||
<p><span class="filename">Filename: src/lib.rs</span></p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>fn first_word(s: &str) -> &str {
|
||
let bytes = s.as_bytes();
|
||
|
||
for (i, &item) in bytes.iter().enumerate() {
|
||
if item == b' ' {
|
||
return &s[0..i];
|
||
}
|
||
}
|
||
|
||
&s[..]
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p><span class="caption">Listing 10-26: A function we defined in Listing 4-9 that
|
||
compiled without lifetime annotations, even though the parameter and return
|
||
type are references</span></p>
|
||
<p>The reason this function compiles without lifetime annotations is historical:
|
||
in early versions (pre-1.0) of Rust, this code wouldn’t have compiled because
|
||
every reference needed an explicit lifetime. At that time, the function
|
||
signature would have been written like this:</p>
|
||
<pre><code class="language-rust ignore">fn first_word<'a>(s: &'a str) -> &'a str {
|
||
</code></pre>
|
||
<p>After writing a lot of Rust code, the Rust team found that Rust programmers
|
||
were entering the same lifetime annotations over and over in particular
|
||
situations. These situations were predictable and followed a few deterministic
|
||
patterns. The developers programmed these patterns into the compiler’s code so
|
||
the borrow checker could infer the lifetimes in these situations and wouldn’t
|
||
need explicit annotations.</p>
|
||
<p>This piece of Rust history is relevant because it’s possible that more
|
||
deterministic patterns will emerge and be added to the compiler. In the future,
|
||
even fewer lifetime annotations might be required.</p>
|
||
<p>The patterns programmed into Rust’s analysis of references are called the
|
||
<em>lifetime elision rules</em>. These aren’t rules for programmers to follow; they’re
|
||
a set of particular cases that the compiler will consider, and if your code
|
||
fits these cases, you don’t need to write the lifetimes explicitly.</p>
|
||
<p>The elision rules don’t provide full inference. If Rust deterministically
|
||
applies the rules but there is still ambiguity as to what lifetimes the
|
||
references have, the compiler won’t guess what the lifetime of the remaining
|
||
references should be. In this case, instead of guessing, the compiler will give
|
||
you an error that you can resolve by adding the lifetime annotations that
|
||
specify how the references relate to each other.</p>
|
||
<p>Lifetimes on function or method parameters are called <em>input lifetimes</em>, and
|
||
lifetimes on return values are called <em>output lifetimes</em>.</p>
|
||
<p>The compiler uses three rules to figure out what lifetimes references have when
|
||
there aren’t explicit annotations. The first rule applies to input lifetimes,
|
||
and the second and third rules apply to output lifetimes. If the compiler gets
|
||
to the end of the three rules and there are still references for which it can’t
|
||
figure out lifetimes, the compiler will stop with an error. These rules apply
|
||
to <code>fn</code> definitions as well as <code>impl</code> blocks.</p>
|
||
<p>The first rule is that each parameter that is a reference gets its own lifetime
|
||
parameter. In other words, a function with one parameter gets one lifetime
|
||
parameter: <code>fn foo<'a>(x: &'a i32)</code>; a function with two parameters gets two
|
||
separate lifetime parameters: <code>fn foo<'a, 'b>(x: &'a i32, y: &'b i32)</code>; and so
|
||
on.</p>
|
||
<p>The second rule is if there is exactly one input lifetime parameter, that
|
||
lifetime is assigned to all output lifetime parameters: <code>fn foo<'a>(x: &'a i32) -> &'a i32</code>.</p>
|
||
<p>The third rule is if there are multiple input lifetime parameters, but one of
|
||
them is <code>&self</code> or <code>&mut self</code> because this is a method, the lifetime of <code>self</code>
|
||
is assigned to all output lifetime parameters. This third rule makes methods
|
||
much nicer to read and write because fewer symbols are necessary.</p>
|
||
<p>Let’s pretend we’re the compiler. We’ll apply these rules to figure out what
|
||
the lifetimes of the references in the signature of the <code>first_word</code> function
|
||
in Listing 10-26 are. The signature starts without any lifetimes associated
|
||
with the references:</p>
|
||
<pre><code class="language-rust ignore">fn first_word(s: &str) -> &str {
|
||
</code></pre>
|
||
<p>Then the compiler applies the first rule, which specifies that each parameter
|
||
gets its own lifetime. We’ll call it <code>'a</code> as usual, so now the signature is
|
||
this:</p>
|
||
<pre><code class="language-rust ignore">fn first_word<'a>(s: &'a str) -> &str {
|
||
</code></pre>
|
||
<p>The second rule applies because there is exactly one input lifetime. The second
|
||
rule specifies that the lifetime of the one input parameter gets assigned to
|
||
the output lifetime, so the signature is now this:</p>
|
||
<pre><code class="language-rust ignore">fn first_word<'a>(s: &'a str) -> &'a str {
|
||
</code></pre>
|
||
<p>Now all the references in this function signature have lifetimes, and the
|
||
compiler can continue its analysis without needing the programmer to annotate
|
||
the lifetimes in this function signature.</p>
|
||
<p>Let’s look at another example, this time using the <code>longest</code> function that had
|
||
no lifetime parameters when we started working with it in Listing 10-21:</p>
|
||
<pre><code class="language-rust ignore">fn longest(x: &str, y: &str) -> &str {
|
||
</code></pre>
|
||
<p>Let’s apply the first rule: each parameter gets its own lifetime. This time we
|
||
have two parameters instead of one, so we have two lifetimes:</p>
|
||
<pre><code class="language-rust ignore">fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str {
|
||
</code></pre>
|
||
<p>You can see that the second rule doesn’t apply because there is more than one
|
||
input lifetime. The third rule doesn’t apply either, because <code>longest</code> is a
|
||
function rather than a method, so none of the parameters are <code>self</code>. After
|
||
working through all three rules, we still haven’t figured out what the return
|
||
type’s lifetime is. This is why we got an error trying to compile the code in
|
||
Listing 10-21: the compiler worked through the lifetime elision rules but still
|
||
couldn’t figure out all the lifetimes of the references in the signature.</p>
|
||
<p>Because the third rule really only applies in method signatures, we’ll look at
|
||
lifetimes in that context next to see why the third rule means we don’t have to
|
||
annotate lifetimes in method signatures very often.</p>
|
||
<h3><a class="header" href="#lifetime-annotations-in-method-definitions" id="lifetime-annotations-in-method-definitions">Lifetime Annotations in Method Definitions</a></h3>
|
||
<p>When we implement methods on a struct with lifetimes, we use the same syntax as
|
||
that of generic type parameters shown in Listing 10-11. Where we declare and
|
||
use the lifetime parameters depends on whether they’re related to the struct
|
||
fields or the method parameters and return values.</p>
|
||
<p>Lifetime names for struct fields always need to be declared after the <code>impl</code>
|
||
keyword and then used after the struct’s name, because those lifetimes are part
|
||
of the struct’s type.</p>
|
||
<p>In method signatures inside the <code>impl</code> block, references might be tied to the
|
||
lifetime of references in the struct’s fields, or they might be independent. In
|
||
addition, the lifetime elision rules often make it so that lifetime annotations
|
||
aren’t necessary in method signatures. Let’s look at some examples using the
|
||
struct named <code>ImportantExcerpt</code> that we defined in Listing 10-25.</p>
|
||
<p>First, we’ll use a method named <code>level</code> whose only parameter is a reference to
|
||
<code>self</code> and whose return value is an <code>i32</code>, which is not a reference to anything:</p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span><span class="boring">struct ImportantExcerpt<'a> {
|
||
</span><span class="boring"> part: &'a str,
|
||
</span><span class="boring">}
|
||
</span><span class="boring">
|
||
</span>impl<'a> ImportantExcerpt<'a> {
|
||
fn level(&self) -> i32 {
|
||
3
|
||
}
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p>The lifetime parameter declaration after <code>impl</code> and its use after the type name
|
||
are required, but we’re not required to annotate the lifetime of the reference
|
||
to <code>self</code> because of the first elision rule.</p>
|
||
<p>Here is an example where the third lifetime elision rule applies:</p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span><span class="boring">struct ImportantExcerpt<'a> {
|
||
</span><span class="boring"> part: &'a str,
|
||
</span><span class="boring">}
|
||
</span><span class="boring">
|
||
</span>impl<'a> ImportantExcerpt<'a> {
|
||
fn announce_and_return_part(&self, announcement: &str) -> &str {
|
||
println!("Attention please: {}", announcement);
|
||
self.part
|
||
}
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p>There are two input lifetimes, so Rust applies the first lifetime elision rule
|
||
and gives both <code>&self</code> and <code>announcement</code> their own lifetimes. Then, because
|
||
one of the parameters is <code>&self</code>, the return type gets the lifetime of <code>&self</code>,
|
||
and all lifetimes have been accounted for.</p>
|
||
<h3><a class="header" href="#the-static-lifetime" id="the-static-lifetime">The Static Lifetime</a></h3>
|
||
<p>One special lifetime we need to discuss is <code>'static</code>, which means that this
|
||
reference <em>can</em> live for the entire duration of the program. All string
|
||
literals have the <code>'static</code> lifetime, which we can annotate as follows:</p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>let s: &'static str = "I have a static lifetime.";
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p>The text of this string is stored directly in the program’s binary, which
|
||
is always available. Therefore, the lifetime of all string literals is
|
||
<code>'static</code>.</p>
|
||
<p>You might see suggestions to use the <code>'static</code> lifetime in error messages. But
|
||
before specifying <code>'static</code> as the lifetime for a reference, think about
|
||
whether the reference you have actually lives the entire lifetime of your
|
||
program or not. You might consider whether you want it to live that long, even
|
||
if it could. Most of the time, the problem results from attempting to create a
|
||
dangling reference or a mismatch of the available lifetimes. In such cases, the
|
||
solution is fixing those problems, not specifying the <code>'static</code> lifetime.</p>
|
||
<h2><a class="header" href="#generic-type-parameters-trait-bounds-and-lifetimes-together" id="generic-type-parameters-trait-bounds-and-lifetimes-together">Generic Type Parameters, Trait Bounds, and Lifetimes Together</a></h2>
|
||
<p>Let’s briefly look at the syntax of specifying generic type parameters, trait
|
||
bounds, and lifetimes all in one function!</p>
|
||
<pre><pre class="playpen"><code class="language-rust">
|
||
<span class="boring">#![allow(unused_variables)]
|
||
</span><span class="boring">fn main() {
|
||
</span>use std::fmt::Display;
|
||
|
||
fn longest_with_an_announcement<'a, T>(x: &'a str, y: &'a str, ann: T) -> &'a str
|
||
where T: Display
|
||
{
|
||
println!("Announcement! {}", ann);
|
||
if x.len() > y.len() {
|
||
x
|
||
} else {
|
||
y
|
||
}
|
||
}
|
||
<span class="boring">}
|
||
</span></code></pre></pre>
|
||
<p>This is the <code>longest</code> function from Listing 10-22 that returns the longer of
|
||
two string slices. But now it has an extra parameter named <code>ann</code> of the generic
|
||
type <code>T</code>, which can be filled in by any type that implements the <code>Display</code>
|
||
trait as specified by the <code>where</code> clause. This extra parameter will be printed
|
||
before the function compares the lengths of the string slices, which is why the
|
||
<code>Display</code> trait bound is necessary. Because lifetimes are a type of generic,
|
||
the declarations of the lifetime parameter <code>'a</code> and the generic type parameter
|
||
<code>T</code> go in the same list inside the angle brackets after the function name.</p>
|
||
<h2><a class="header" href="#summary" id="summary">Summary</a></h2>
|
||
<p>We covered a lot in this chapter! Now that you know about generic type
|
||
parameters, traits and trait bounds, and generic lifetime parameters, you’re
|
||
ready to write code without repetition that works in many different situations.
|
||
Generic type parameters let you apply the code to different types. Traits and
|
||
trait bounds ensure that even though the types are generic, they’ll have the
|
||
behavior the code needs. You learned how to use lifetime annotations to ensure
|
||
that this flexible code won’t have any dangling references. And all of this
|
||
analysis happens at compile time, which doesn’t affect runtime performance!</p>
|
||
<p>Believe it or not, there is much more to learn on the topics we discussed in
|
||
this chapter: Chapter 17 discusses trait objects, which are another way to use
|
||
traits. Chapter 19 covers more complex scenarios involving lifetime annotations
|
||
as well as some advanced type system features. But next, you’ll learn how to
|
||
write tests in Rust so you can make sure your code is working the way it should.</p>
|
||
|
||
</main>
|
||
|
||
<nav class="nav-wrapper" aria-label="Page navigation">
|
||
<!-- Mobile navigation buttons -->
|
||
|
||
<a rel="prev" href="ch10-02-traits.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
|
||
<i class="fa fa-angle-left"></i>
|
||
</a>
|
||
|
||
|
||
|
||
<a rel="next" href="ch11-00-testing.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
|
||
<i class="fa fa-angle-right"></i>
|
||
</a>
|
||
|
||
|
||
<div style="clear: both"></div>
|
||
</nav>
|
||
</div>
|
||
</div>
|
||
|
||
<nav class="nav-wide-wrapper" aria-label="Page navigation">
|
||
|
||
<a href="ch10-02-traits.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
|
||
<i class="fa fa-angle-left"></i>
|
||
</a>
|
||
|
||
|
||
|
||
<a href="ch11-00-testing.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
|
||
<i class="fa fa-angle-right"></i>
|
||
</a>
|
||
|
||
</nav>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script type="text/javascript">
|
||
window.playpen_copyable = true;
|
||
</script>
|
||
|
||
|
||
|
||
|
||
|
||
<script src="elasticlunr.min.js" type="text/javascript" charset="utf-8"></script>
|
||
<script src="mark.min.js" type="text/javascript" charset="utf-8"></script>
|
||
<script src="searcher.js" type="text/javascript" charset="utf-8"></script>
|
||
|
||
|
||
<script src="clipboard.min.js" type="text/javascript" charset="utf-8"></script>
|
||
<script src="highlight.js" type="text/javascript" charset="utf-8"></script>
|
||
<script src="book.js" type="text/javascript" charset="utf-8"></script>
|
||
|
||
<!-- Custom JS scripts -->
|
||
|
||
<script type="text/javascript" src="ferris.js"></script>
|
||
|
||
|
||
|
||
|
||
</body>
|
||
</html>
|