RustBook/ch18-03-pattern-syntax.html
2020-01-06 21:57:15 +01:00

935 lines
63 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE HTML>
<html lang="en" class="sidebar-visible no-js light">
<head>
<!-- Book generated using mdBook -->
<meta charset="UTF-8">
<title>Pattern Syntax - The Rust Programming Language</title>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type">
<meta name="description" content="">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#ffffff" />
<link rel="shortcut icon" href="favicon.png">
<link rel="stylesheet" href="css/variables.css">
<link rel="stylesheet" href="css/general.css">
<link rel="stylesheet" href="css/chrome.css">
<link rel="stylesheet" href="css/print.css" media="print">
<!-- Fonts -->
<link rel="stylesheet" href="FontAwesome/css/font-awesome.css">
<link href="googleFonts/css.css" rel="stylesheet" type="text/css">
<!-- Highlight.js Stylesheets -->
<link rel="stylesheet" href="highlight.css">
<link rel="stylesheet" href="tomorrow-night.css">
<link rel="stylesheet" href="ayu-highlight.css">
<!-- Custom theme stylesheets -->
<link rel="stylesheet" href="ferris.css">
<link rel="stylesheet" href="theme/2018-edition.css">
</head>
<body>
<!-- Provide site root to javascript -->
<script type="text/javascript">
var path_to_root = "";
var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "light" : "light";
</script>
<!-- Work around some values being stored in localStorage wrapped in quotes -->
<script type="text/javascript">
try {
var theme = localStorage.getItem('mdbook-theme');
var sidebar = localStorage.getItem('mdbook-sidebar');
if (theme.startsWith('"') && theme.endsWith('"')) {
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
}
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
}
} catch (e) { }
</script>
<!-- Set the theme before any content is loaded, prevents flash -->
<script type="text/javascript">
var theme;
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
if (theme === null || theme === undefined) { theme = default_theme; }
var html = document.querySelector('html');
html.classList.remove('no-js')
html.classList.remove('light')
html.classList.add(theme);
html.classList.add('js');
</script>
<!-- Hide / unhide sidebar before it is displayed -->
<script type="text/javascript">
var html = document.querySelector('html');
var sidebar = 'hidden';
if (document.body.clientWidth >= 1080) {
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
sidebar = sidebar || 'visible';
}
html.classList.remove('sidebar-visible');
html.classList.add("sidebar-" + sidebar);
</script>
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
<div id="sidebar-scrollbox" class="sidebar-scrollbox">
<ol class="chapter"><li class="expanded affix "><a href="title-page.html">The Rust Programming Language</a></li><li class="expanded affix "><a href="foreword.html">Foreword</a></li><li class="expanded affix "><a href="ch00-00-introduction.html">Introduction</a></li><li class="expanded "><a href="ch01-00-getting-started.html"><strong aria-hidden="true">1.</strong> Getting Started</a></li><li><ol class="section"><li class="expanded "><a href="ch01-01-installation.html"><strong aria-hidden="true">1.1.</strong> Installation</a></li><li class="expanded "><a href="ch01-02-hello-world.html"><strong aria-hidden="true">1.2.</strong> Hello, World!</a></li><li class="expanded "><a href="ch01-03-hello-cargo.html"><strong aria-hidden="true">1.3.</strong> Hello, Cargo!</a></li></ol></li><li class="expanded "><a href="ch02-00-guessing-game-tutorial.html"><strong aria-hidden="true">2.</strong> Programming a Guessing Game</a></li><li class="expanded "><a href="ch03-00-common-programming-concepts.html"><strong aria-hidden="true">3.</strong> Common Programming Concepts</a></li><li><ol class="section"><li class="expanded "><a href="ch03-01-variables-and-mutability.html"><strong aria-hidden="true">3.1.</strong> Variables and Mutability</a></li><li class="expanded "><a href="ch03-02-data-types.html"><strong aria-hidden="true">3.2.</strong> Data Types</a></li><li class="expanded "><a href="ch03-03-how-functions-work.html"><strong aria-hidden="true">3.3.</strong> Functions</a></li><li class="expanded "><a href="ch03-04-comments.html"><strong aria-hidden="true">3.4.</strong> Comments</a></li><li class="expanded "><a href="ch03-05-control-flow.html"><strong aria-hidden="true">3.5.</strong> Control Flow</a></li></ol></li><li class="expanded "><a href="ch04-00-understanding-ownership.html"><strong aria-hidden="true">4.</strong> Understanding Ownership</a></li><li><ol class="section"><li class="expanded "><a href="ch04-01-what-is-ownership.html"><strong aria-hidden="true">4.1.</strong> What is Ownership?</a></li><li class="expanded "><a href="ch04-02-references-and-borrowing.html"><strong aria-hidden="true">4.2.</strong> References and Borrowing</a></li><li class="expanded "><a href="ch04-03-slices.html"><strong aria-hidden="true">4.3.</strong> The Slice Type</a></li></ol></li><li class="expanded "><a href="ch05-00-structs.html"><strong aria-hidden="true">5.</strong> Using Structs to Structure Related Data</a></li><li><ol class="section"><li class="expanded "><a href="ch05-01-defining-structs.html"><strong aria-hidden="true">5.1.</strong> Defining and Instantiating Structs</a></li><li class="expanded "><a href="ch05-02-example-structs.html"><strong aria-hidden="true">5.2.</strong> An Example Program Using Structs</a></li><li class="expanded "><a href="ch05-03-method-syntax.html"><strong aria-hidden="true">5.3.</strong> Method Syntax</a></li></ol></li><li class="expanded "><a href="ch06-00-enums.html"><strong aria-hidden="true">6.</strong> Enums and Pattern Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch06-01-defining-an-enum.html"><strong aria-hidden="true">6.1.</strong> Defining an Enum</a></li><li class="expanded "><a href="ch06-02-match.html"><strong aria-hidden="true">6.2.</strong> The match Control Flow Operator</a></li><li class="expanded "><a href="ch06-03-if-let.html"><strong aria-hidden="true">6.3.</strong> Concise Control Flow with if let</a></li></ol></li><li class="expanded "><a href="ch07-00-managing-growing-projects-with-packages-crates-and-modules.html"><strong aria-hidden="true">7.</strong> Managing Growing Projects with Packages, Crates, and Modules</a></li><li><ol class="section"><li class="expanded "><a href="ch07-01-packages-and-crates.html"><strong aria-hidden="true">7.1.</strong> Packages and Crates</a></li><li class="expanded "><a href="ch07-02-defining-modules-to-control-scope-and-privacy.html"><strong aria-hidden="true">7.2.</strong> Defining Modules to Control Scope and Privacy</a></li><li class="expanded "><a href="ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html"><strong aria-hidden="true">7.3.</strong> Paths for Referring to an Item in the Module Tree</a></li><li class="expanded "><a href="ch07-04-bringing-paths-into-scope-with-the-use-keyword.html"><strong aria-hidden="true">7.4.</strong> Bringing Paths Into Scope with the use Keyword</a></li><li class="expanded "><a href="ch07-05-separating-modules-into-different-files.html"><strong aria-hidden="true">7.5.</strong> Separating Modules into Different Files</a></li></ol></li><li class="expanded "><a href="ch08-00-common-collections.html"><strong aria-hidden="true">8.</strong> Common Collections</a></li><li><ol class="section"><li class="expanded "><a href="ch08-01-vectors.html"><strong aria-hidden="true">8.1.</strong> Storing Lists of Values with Vectors</a></li><li class="expanded "><a href="ch08-02-strings.html"><strong aria-hidden="true">8.2.</strong> Storing UTF-8 Encoded Text with Strings</a></li><li class="expanded "><a href="ch08-03-hash-maps.html"><strong aria-hidden="true">8.3.</strong> Storing Keys with Associated Values in Hash Maps</a></li></ol></li><li class="expanded "><a href="ch09-00-error-handling.html"><strong aria-hidden="true">9.</strong> Error Handling</a></li><li><ol class="section"><li class="expanded "><a href="ch09-01-unrecoverable-errors-with-panic.html"><strong aria-hidden="true">9.1.</strong> Unrecoverable Errors with panic!</a></li><li class="expanded "><a href="ch09-02-recoverable-errors-with-result.html"><strong aria-hidden="true">9.2.</strong> Recoverable Errors with Result</a></li><li class="expanded "><a href="ch09-03-to-panic-or-not-to-panic.html"><strong aria-hidden="true">9.3.</strong> To panic! or Not To panic!</a></li></ol></li><li class="expanded "><a href="ch10-00-generics.html"><strong aria-hidden="true">10.</strong> Generic Types, Traits, and Lifetimes</a></li><li><ol class="section"><li class="expanded "><a href="ch10-01-syntax.html"><strong aria-hidden="true">10.1.</strong> Generic Data Types</a></li><li class="expanded "><a href="ch10-02-traits.html"><strong aria-hidden="true">10.2.</strong> Traits: Defining Shared Behavior</a></li><li class="expanded "><a href="ch10-03-lifetime-syntax.html"><strong aria-hidden="true">10.3.</strong> Validating References with Lifetimes</a></li></ol></li><li class="expanded "><a href="ch11-00-testing.html"><strong aria-hidden="true">11.</strong> Writing Automated Tests</a></li><li><ol class="section"><li class="expanded "><a href="ch11-01-writing-tests.html"><strong aria-hidden="true">11.1.</strong> How to Write Tests</a></li><li class="expanded "><a href="ch11-02-running-tests.html"><strong aria-hidden="true">11.2.</strong> Controlling How Tests Are Run</a></li><li class="expanded "><a href="ch11-03-test-organization.html"><strong aria-hidden="true">11.3.</strong> Test Organization</a></li></ol></li><li class="expanded "><a href="ch12-00-an-io-project.html"><strong aria-hidden="true">12.</strong> An I/O Project: Building a Command Line Program</a></li><li><ol class="section"><li class="expanded "><a href="ch12-01-accepting-command-line-arguments.html"><strong aria-hidden="true">12.1.</strong> Accepting Command Line Arguments</a></li><li class="expanded "><a href="ch12-02-reading-a-file.html"><strong aria-hidden="true">12.2.</strong> Reading a File</a></li><li class="expanded "><a href="ch12-03-improving-error-handling-and-modularity.html"><strong aria-hidden="true">12.3.</strong> Refactoring to Improve Modularity and Error Handling</a></li><li class="expanded "><a href="ch12-04-testing-the-librarys-functionality.html"><strong aria-hidden="true">12.4.</strong> Developing the Librarys Functionality with Test Driven Development</a></li><li class="expanded "><a href="ch12-05-working-with-environment-variables.html"><strong aria-hidden="true">12.5.</strong> Working with Environment Variables</a></li><li class="expanded "><a href="ch12-06-writing-to-stderr-instead-of-stdout.html"><strong aria-hidden="true">12.6.</strong> Writing Error Messages to Standard Error Instead of Standard Output</a></li></ol></li><li class="expanded "><a href="ch13-00-functional-features.html"><strong aria-hidden="true">13.</strong> Functional Language Features: Iterators and Closures</a></li><li><ol class="section"><li class="expanded "><a href="ch13-01-closures.html"><strong aria-hidden="true">13.1.</strong> Closures: Anonymous Functions that Can Capture Their Environment</a></li><li class="expanded "><a href="ch13-02-iterators.html"><strong aria-hidden="true">13.2.</strong> Processing a Series of Items with Iterators</a></li><li class="expanded "><a href="ch13-03-improving-our-io-project.html"><strong aria-hidden="true">13.3.</strong> Improving Our I/O Project</a></li><li class="expanded "><a href="ch13-04-performance.html"><strong aria-hidden="true">13.4.</strong> Comparing Performance: Loops vs. Iterators</a></li></ol></li><li class="expanded "><a href="ch14-00-more-about-cargo.html"><strong aria-hidden="true">14.</strong> More about Cargo and Crates.io</a></li><li><ol class="section"><li class="expanded "><a href="ch14-01-release-profiles.html"><strong aria-hidden="true">14.1.</strong> Customizing Builds with Release Profiles</a></li><li class="expanded "><a href="ch14-02-publishing-to-crates-io.html"><strong aria-hidden="true">14.2.</strong> Publishing a Crate to Crates.io</a></li><li class="expanded "><a href="ch14-03-cargo-workspaces.html"><strong aria-hidden="true">14.3.</strong> Cargo Workspaces</a></li><li class="expanded "><a href="ch14-04-installing-binaries.html"><strong aria-hidden="true">14.4.</strong> Installing Binaries from Crates.io with cargo install</a></li><li class="expanded "><a href="ch14-05-extending-cargo.html"><strong aria-hidden="true">14.5.</strong> Extending Cargo with Custom Commands</a></li></ol></li><li class="expanded "><a href="ch15-00-smart-pointers.html"><strong aria-hidden="true">15.</strong> Smart Pointers</a></li><li><ol class="section"><li class="expanded "><a href="ch15-01-box.html"><strong aria-hidden="true">15.1.</strong> Using Box<T> to Point to Data on the Heap</a></li><li class="expanded "><a href="ch15-02-deref.html"><strong aria-hidden="true">15.2.</strong> Treating Smart Pointers Like Regular References with the Deref Trait</a></li><li class="expanded "><a href="ch15-03-drop.html"><strong aria-hidden="true">15.3.</strong> Running Code on Cleanup with the Drop Trait</a></li><li class="expanded "><a href="ch15-04-rc.html"><strong aria-hidden="true">15.4.</strong> Rc<T>, the Reference Counted Smart Pointer</a></li><li class="expanded "><a href="ch15-05-interior-mutability.html"><strong aria-hidden="true">15.5.</strong> RefCell<T> and the Interior Mutability Pattern</a></li><li class="expanded "><a href="ch15-06-reference-cycles.html"><strong aria-hidden="true">15.6.</strong> Reference Cycles Can Leak Memory</a></li></ol></li><li class="expanded "><a href="ch16-00-concurrency.html"><strong aria-hidden="true">16.</strong> Fearless Concurrency</a></li><li><ol class="section"><li class="expanded "><a href="ch16-01-threads.html"><strong aria-hidden="true">16.1.</strong> Using Threads to Run Code Simultaneously</a></li><li class="expanded "><a href="ch16-02-message-passing.html"><strong aria-hidden="true">16.2.</strong> Using Message Passing to Transfer Data Between Threads</a></li><li class="expanded "><a href="ch16-03-shared-state.html"><strong aria-hidden="true">16.3.</strong> Shared-State Concurrency</a></li><li class="expanded "><a href="ch16-04-extensible-concurrency-sync-and-send.html"><strong aria-hidden="true">16.4.</strong> Extensible Concurrency with the Sync and Send Traits</a></li></ol></li><li class="expanded "><a href="ch17-00-oop.html"><strong aria-hidden="true">17.</strong> Object Oriented Programming Features of Rust</a></li><li><ol class="section"><li class="expanded "><a href="ch17-01-what-is-oo.html"><strong aria-hidden="true">17.1.</strong> Characteristics of Object-Oriented Languages</a></li><li class="expanded "><a href="ch17-02-trait-objects.html"><strong aria-hidden="true">17.2.</strong> Using Trait Objects That Allow for Values of Different Types</a></li><li class="expanded "><a href="ch17-03-oo-design-patterns.html"><strong aria-hidden="true">17.3.</strong> Implementing an Object-Oriented Design Pattern</a></li></ol></li><li class="expanded "><a href="ch18-00-patterns.html"><strong aria-hidden="true">18.</strong> Patterns and Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch18-01-all-the-places-for-patterns.html"><strong aria-hidden="true">18.1.</strong> All the Places Patterns Can Be Used</a></li><li class="expanded "><a href="ch18-02-refutability.html"><strong aria-hidden="true">18.2.</strong> Refutability: Whether a Pattern Might Fail to Match</a></li><li class="expanded "><a href="ch18-03-pattern-syntax.html" class="active"><strong aria-hidden="true">18.3.</strong> Pattern Syntax</a></li></ol></li><li class="expanded "><a href="ch19-00-advanced-features.html"><strong aria-hidden="true">19.</strong> Advanced Features</a></li><li><ol class="section"><li class="expanded "><a href="ch19-01-unsafe-rust.html"><strong aria-hidden="true">19.1.</strong> Unsafe Rust</a></li><li class="expanded "><a href="ch19-03-advanced-traits.html"><strong aria-hidden="true">19.2.</strong> Advanced Traits</a></li><li class="expanded "><a href="ch19-04-advanced-types.html"><strong aria-hidden="true">19.3.</strong> Advanced Types</a></li><li class="expanded "><a href="ch19-05-advanced-functions-and-closures.html"><strong aria-hidden="true">19.4.</strong> Advanced Functions and Closures</a></li><li class="expanded "><a href="ch19-06-macros.html"><strong aria-hidden="true">19.5.</strong> Macros</a></li></ol></li><li class="expanded "><a href="ch20-00-final-project-a-web-server.html"><strong aria-hidden="true">20.</strong> Final Project: Building a Multithreaded Web Server</a></li><li><ol class="section"><li class="expanded "><a href="ch20-01-single-threaded.html"><strong aria-hidden="true">20.1.</strong> Building a Single-Threaded Web Server</a></li><li class="expanded "><a href="ch20-02-multithreaded.html"><strong aria-hidden="true">20.2.</strong> Turning Our Single-Threaded Server into a Multithreaded Server</a></li><li class="expanded "><a href="ch20-03-graceful-shutdown-and-cleanup.html"><strong aria-hidden="true">20.3.</strong> Graceful Shutdown and Cleanup</a></li></ol></li><li class="expanded "><a href="appendix-00.html"><strong aria-hidden="true">21.</strong> Appendix</a></li><li><ol class="section"><li class="expanded "><a href="appendix-01-keywords.html"><strong aria-hidden="true">21.1.</strong> A - Keywords</a></li><li class="expanded "><a href="appendix-02-operators.html"><strong aria-hidden="true">21.2.</strong> B - Operators and Symbols</a></li><li class="expanded "><a href="appendix-03-derivable-traits.html"><strong aria-hidden="true">21.3.</strong> C - Derivable Traits</a></li><li class="expanded "><a href="appendix-04-useful-development-tools.html"><strong aria-hidden="true">21.4.</strong> D - Useful Development Tools</a></li><li class="expanded "><a href="appendix-05-editions.html"><strong aria-hidden="true">21.5.</strong> E - Editions</a></li><li class="expanded "><a href="appendix-06-translation.html"><strong aria-hidden="true">21.6.</strong> F - Translations of the Book</a></li><li class="expanded "><a href="appendix-07-nightly-rust.html"><strong aria-hidden="true">21.7.</strong> G - How Rust is Made and “Nightly Rust”</a></li></ol></li></ol>
</div>
<div id="sidebar-resize-handle" class="sidebar-resize-handle"></div>
</nav>
<div id="page-wrapper" class="page-wrapper">
<div class="page">
<div id="menu-bar" class="menu-bar">
<div id="menu-bar-sticky-container">
<div class="left-buttons">
<button id="sidebar-toggle" class="icon-button" type="button" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
<i class="fa fa-bars"></i>
</button>
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
<i class="fa fa-paint-brush"></i>
</button>
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
<li role="none"><button role="menuitem" class="theme" id="light">Light (default)</button></li>
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
</ul>
<button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
<i class="fa fa-search"></i>
</button>
</div>
<h1 class="menu-title">The Rust Programming Language</h1>
<div class="right-buttons">
<a href="print.html" title="Print this book" aria-label="Print this book">
<i id="print-button" class="fa fa-print"></i>
</a>
</div>
</div>
</div>
<div id="search-wrapper" class="hidden">
<form id="searchbar-outer" class="searchbar-outer">
<input type="search" name="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
</form>
<div id="searchresults-outer" class="searchresults-outer hidden">
<div id="searchresults-header" class="searchresults-header"></div>
<ul id="searchresults">
</ul>
</div>
</div>
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
<script type="text/javascript">
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
});
</script>
<div id="content" class="content">
<main>
<h2><a class="header" href="#pattern-syntax" id="pattern-syntax">Pattern Syntax</a></h2>
<p>Throughout the book, youve seen examples of many kinds of patterns. In this
section, we gather all the syntax valid in patterns and discuss why you might
want to use each one.</p>
<h3><a class="header" href="#matching-literals" id="matching-literals">Matching Literals</a></h3>
<p>As you saw in Chapter 6, you can match patterns against literals directly. The
following code gives some examples:</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let x = 1;
match x {
1 =&gt; println!(&quot;one&quot;),
2 =&gt; println!(&quot;two&quot;),
3 =&gt; println!(&quot;three&quot;),
_ =&gt; println!(&quot;anything&quot;),
}
<span class="boring">}
</span></code></pre></pre>
<p>This code prints <code>one</code> because the value in <code>x</code> is 1. This syntax is useful
when you want your code to take an action if it gets a particular concrete
value.</p>
<h3><a class="header" href="#matching-named-variables" id="matching-named-variables">Matching Named Variables</a></h3>
<p>Named variables are irrefutable patterns that match any value, and weve used
them many times in the book. However, there is a complication when you use
named variables in <code>match</code> expressions. Because <code>match</code> starts a new scope,
variables declared as part of a pattern inside the <code>match</code> expression will
shadow those with the same name outside the <code>match</code> construct, as is the case
with all variables. In Listing 18-11, we declare a variable named <code>x</code> with the
value <code>Some(5)</code> and a variable <code>y</code> with the value <code>10</code>. We then create a
<code>match</code> expression on the value <code>x</code>. Look at the patterns in the match arms and
<code>println!</code> at the end, and try to figure out what the code will print before
running this code or reading further.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn main() {
let x = Some(5);
let y = 10;
match x {
Some(50) =&gt; println!(&quot;Got 50&quot;),
Some(y) =&gt; println!(&quot;Matched, y = {:?}&quot;, y),
_ =&gt; println!(&quot;Default case, x = {:?}&quot;, x),
}
println!(&quot;at the end: x = {:?}, y = {:?}&quot;, x, y);
}
</code></pre></pre>
<p><span class="caption">Listing 18-11: A <code>match</code> expression with an arm that
introduces a shadowed variable <code>y</code></span></p>
<p>Lets walk through what happens when the <code>match</code> expression runs. The pattern
in the first match arm doesnt match the defined value of <code>x</code>, so the code
continues.</p>
<p>The pattern in the second match arm introduces a new variable named <code>y</code> that
will match any value inside a <code>Some</code> value. Because were in a new scope inside
the <code>match</code> expression, this is a new <code>y</code> variable, not the <code>y</code> we declared at
the beginning with the value 10. This new <code>y</code> binding will match any value
inside a <code>Some</code>, which is what we have in <code>x</code>. Therefore, this new <code>y</code> binds to
the inner value of the <code>Some</code> in <code>x</code>. That value is <code>5</code>, so the expression for
that arm executes and prints <code>Matched, y = 5</code>.</p>
<p>If <code>x</code> had been a <code>None</code> value instead of <code>Some(5)</code>, the patterns in the first
two arms wouldnt have matched, so the value would have matched to the
underscore. We didnt introduce the <code>x</code> variable in the pattern of the
underscore arm, so the <code>x</code> in the expression is still the outer <code>x</code> that hasnt
been shadowed. In this hypothetical case, the <code>match</code> would print <code>Default case, x = None</code>.</p>
<p>When the <code>match</code> expression is done, its scope ends, and so does the scope of
the inner <code>y</code>. The last <code>println!</code> produces <code>at the end: x = Some(5), y = 10</code>.</p>
<p>To create a <code>match</code> expression that compares the values of the outer <code>x</code> and
<code>y</code>, rather than introducing a shadowed variable, we would need to use a match
guard conditional instead. Well talk about match guards later in the <a href="#extra-conditionals-with-match-guards">“Extra
Conditionals with Match Guards”</a><!--
ignore --> section.</p>
<h3><a class="header" href="#multiple-patterns" id="multiple-patterns">Multiple Patterns</a></h3>
<p>In <code>match</code> expressions, you can match multiple patterns using the <code>|</code> syntax,
which means <em>or</em>. For example, the following code matches the value of <code>x</code>
against the match arms, the first of which has an <em>or</em> option, meaning if the
value of <code>x</code> matches either of the values in that arm, that arms code will
run:</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let x = 1;
match x {
1 | 2 =&gt; println!(&quot;one or two&quot;),
3 =&gt; println!(&quot;three&quot;),
_ =&gt; println!(&quot;anything&quot;),
}
<span class="boring">}
</span></code></pre></pre>
<p>This code prints <code>one or two</code>.</p>
<h3><a class="header" href="#matching-ranges-of-values-with-" id="matching-ranges-of-values-with-">Matching Ranges of Values with <code>..=</code></a></h3>
<p>The <code>..=</code> syntax allows us to match to an inclusive range of values. In the
following code, when a pattern matches any of the values within the range, that
arm will execute:</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let x = 5;
match x {
1..=5 =&gt; println!(&quot;one through five&quot;),
_ =&gt; println!(&quot;something else&quot;),
}
<span class="boring">}
</span></code></pre></pre>
<p>If <code>x</code> is 1, 2, 3, 4, or 5, the first arm will match. This syntax is more
convenient than using the <code>|</code> operator to express the same idea; instead of
<code>1..=5</code>, we would have to specify <code>1 | 2 | 3 | 4 | 5</code> if we used <code>|</code>.
Specifying a range is much shorter, especially if we want to match, say, any
number between 1 and 1,000!</p>
<p>Ranges are only allowed with numeric values or <code>char</code> values, because the
compiler checks that the range isnt empty at compile time. The only types for
which Rust can tell if a range is empty or not are <code>char</code> and numeric values.</p>
<p>Here is an example using ranges of <code>char</code> values:</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let x = 'c';
match x {
'a'..='j' =&gt; println!(&quot;early ASCII letter&quot;),
'k'..='z' =&gt; println!(&quot;late ASCII letter&quot;),
_ =&gt; println!(&quot;something else&quot;),
}
<span class="boring">}
</span></code></pre></pre>
<p>Rust can tell that <code>c</code> is within the first patterns range and prints <code>early ASCII letter</code>.</p>
<h3><a class="header" href="#destructuring-to-break-apart-values" id="destructuring-to-break-apart-values">Destructuring to Break Apart Values</a></h3>
<p>We can also use patterns to destructure structs, enums, tuples, and references
to use different parts of these values. Lets walk through each value.</p>
<h4><a class="header" href="#destructuring-structs" id="destructuring-structs">Destructuring Structs</a></h4>
<p>Listing 18-12 shows a <code>Point</code> struct with two fields, <code>x</code> and <code>y</code>, that we can
break apart using a pattern with a <code>let</code> statement.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">struct Point {
x: i32,
y: i32,
}
fn main() {
let p = Point { x: 0, y: 7 };
let Point { x: a, y: b } = p;
assert_eq!(0, a);
assert_eq!(7, b);
}
</code></pre></pre>
<p><span class="caption">Listing 18-12: Destructuring a structs fields into
separate variables</span></p>
<p>This code creates the variables <code>a</code> and <code>b</code> that match the values of the <code>x</code>
and <code>y</code> fields of the <code>p</code> struct. This example shows that the names of the
variables in the pattern dont have to match the field names of the struct. But
its common to want the variable names to match the field names to make it
easier to remember which variables came from which fields.</p>
<p>Because having variable names match the fields is common and because writing
<code>let Point { x: x, y: y } = p;</code> contains a lot of duplication, there is a
shorthand for patterns that match struct fields: you only need to list the name
of the struct field, and the variables created from the pattern will have the
same names. Listing 18-13 shows code that behaves in the same way as the code
in Listing 18-12, but the variables created in the <code>let</code> pattern are <code>x</code> and
<code>y</code> instead of <code>a</code> and <code>b</code>.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">struct Point {
x: i32,
y: i32,
}
fn main() {
let p = Point { x: 0, y: 7 };
let Point { x, y } = p;
assert_eq!(0, x);
assert_eq!(7, y);
}
</code></pre></pre>
<p><span class="caption">Listing 18-13: Destructuring struct fields using struct
field shorthand</span></p>
<p>This code creates the variables <code>x</code> and <code>y</code> that match the <code>x</code> and <code>y</code> fields
of the <code>p</code> variable. The outcome is that the variables <code>x</code> and <code>y</code> contain the
values from the <code>p</code> struct.</p>
<p>We can also destructure with literal values as part of the struct pattern
rather than creating variables for all the fields. Doing so allows us to test
some of the fields for particular values while creating variables to
destructure the other fields.</p>
<p>Listing 18-14 shows a <code>match</code> expression that separates <code>Point</code> values into
three cases: points that lie directly on the <code>x</code> axis (which is true when <code>y = 0</code>), on the <code>y</code> axis (<code>x = 0</code>), or neither.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust"><span class="boring">struct Point {
</span><span class="boring"> x: i32,
</span><span class="boring"> y: i32,
</span><span class="boring">}
</span><span class="boring">
</span>fn main() {
let p = Point { x: 0, y: 7 };
match p {
Point { x, y: 0 } =&gt; println!(&quot;On the x axis at {}&quot;, x),
Point { x: 0, y } =&gt; println!(&quot;On the y axis at {}&quot;, y),
Point { x, y } =&gt; println!(&quot;On neither axis: ({}, {})&quot;, x, y),
}
}
</code></pre></pre>
<p><span class="caption">Listing 18-14: Destructuring and matching literal values
in one pattern</span></p>
<p>The first arm will match any point that lies on the <code>x</code> axis by specifying that
the <code>y</code> field matches if its value matches the literal <code>0</code>. The pattern still
creates an <code>x</code> variable that we can use in the code for this arm.</p>
<p>Similarly, the second arm matches any point on the <code>y</code> axis by specifying that
the <code>x</code> field matches if its value is <code>0</code> and creates a variable <code>y</code> for the
value of the <code>y</code> field. The third arm doesnt specify any literals, so it
matches any other <code>Point</code> and creates variables for both the <code>x</code> and <code>y</code> fields.</p>
<p>In this example, the value <code>p</code> matches the second arm by virtue of <code>x</code>
containing a 0, so this code will print <code>On the y axis at 7</code>.</p>
<h4><a class="header" href="#destructuring-enums" id="destructuring-enums">Destructuring Enums</a></h4>
<p>Weve destructured enums earlier in this book, for example, when we
destructured <code>Option&lt;i32&gt;</code> in Listing 6-5 in Chapter 6. One detail we havent
mentioned explicitly is that the pattern to destructure an enum should
correspond to the way the data stored within the enum is defined. As an
example, in Listing 18-15 we use the <code>Message</code> enum from Listing 6-2 and write
a <code>match</code> with patterns that will destructure each inner value.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
}
fn main() {
let msg = Message::ChangeColor(0, 160, 255);
match msg {
Message::Quit =&gt; {
println!(&quot;The Quit variant has no data to destructure.&quot;)
},
Message::Move { x, y } =&gt; {
println!(
&quot;Move in the x direction {} and in the y direction {}&quot;,
x,
y
);
}
Message::Write(text) =&gt; println!(&quot;Text message: {}&quot;, text),
Message::ChangeColor(r, g, b) =&gt; {
println!(
&quot;Change the color to red {}, green {}, and blue {}&quot;,
r,
g,
b
)
}
}
}
</code></pre></pre>
<p><span class="caption">Listing 18-15: Destructuring enum variants that hold
different kinds of values</span></p>
<p>This code will print <code>Change the color to red 0, green 160, and blue 255</code>. Try
changing the value of <code>msg</code> to see the code from the other arms run.</p>
<p>For enum variants without any data, like <code>Message::Quit</code>, we cant destructure
the value any further. We can only match on the literal <code>Message::Quit</code> value,
and no variables are in that pattern.</p>
<p>For struct-like enum variants, such as <code>Message::Move</code>, we can use a pattern
similar to the pattern we specify to match structs. After the variant name, we
place curly brackets and then list the fields with variables so we break apart
the pieces to use in the code for this arm. Here we use the shorthand form as
we did in Listing 18-13.</p>
<p>For tuple-like enum variants, like <code>Message::Write</code> that holds a tuple with one
element and <code>Message::ChangeColor</code> that holds a tuple with three elements, the
pattern is similar to the pattern we specify to match tuples. The number of
variables in the pattern must match the number of elements in the variant were
matching.</p>
<h4><a class="header" href="#destructuring-nested-structs-and-enums" id="destructuring-nested-structs-and-enums">Destructuring Nested Structs and Enums</a></h4>
<p>Until now, all our examples have been matching structs or enums that were one
level deep. Matching can work on nested items too!</p>
<p>For example, we can refactor the code in Listing 18-15 to support RGB and HSV
colors in the <code>ChangeColor</code> message, as shown in Listing 18-16.</p>
<pre><pre class="playpen"><code class="language-rust">enum Color {
Rgb(i32, i32, i32),
Hsv(i32, i32, i32),
}
enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(Color),
}
fn main() {
let msg = Message::ChangeColor(Color::Hsv(0, 160, 255));
match msg {
Message::ChangeColor(Color::Rgb(r, g, b)) =&gt; {
println!(
&quot;Change the color to red {}, green {}, and blue {}&quot;,
r,
g,
b
)
},
Message::ChangeColor(Color::Hsv(h, s, v)) =&gt; {
println!(
&quot;Change the color to hue {}, saturation {}, and value {}&quot;,
h,
s,
v
)
}
_ =&gt; ()
}
}
</code></pre></pre>
<p><span class="caption">Listing 18-16: Matching on nested enums</span></p>
<p>The pattern of the first arm in the <code>match</code> expression matches a
<code>Message::ChangeColor</code> enum variant that contains a <code>Color::Rgb</code> variant; then
the pattern binds to the three inner <code>i32</code> values. The pattern of the second
arm also matches a <code>Message::ChangeColor</code> enum variant, but the inner enum
matches the <code>Color::Hsv</code> variant instead. We can specify these complex
conditions in one <code>match</code> expression, even though two enums are involved.</p>
<h4><a class="header" href="#destructuring-structs-and-tuples" id="destructuring-structs-and-tuples">Destructuring Structs and Tuples</a></h4>
<p>We can mix, match, and nest destructuring patterns in even more complex ways.
The following example shows a complicated destructure where we nest structs and
tuples inside a tuple and destructure all the primitive values out:</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span><span class="boring">struct Point {
</span><span class="boring"> x: i32,
</span><span class="boring"> y: i32,
</span><span class="boring">}
</span><span class="boring">
</span>let ((feet, inches), Point {x, y}) = ((3, 10), Point { x: 3, y: -10 });
<span class="boring">}
</span></code></pre></pre>
<p>This code lets us break complex types into their component parts so we can use
the values were interested in separately.</p>
<p>Destructuring with patterns is a convenient way to use pieces of values, such
as the value from each field in a struct, separately from each other.</p>
<h3><a class="header" href="#ignoring-values-in-a-pattern" id="ignoring-values-in-a-pattern">Ignoring Values in a Pattern</a></h3>
<p>Youve seen that its sometimes useful to ignore values in a pattern, such as
in the last arm of a <code>match</code>, to get a catchall that doesnt actually do
anything but does account for all remaining possible values. There are a few
ways to ignore entire values or parts of values in a pattern: using the <code>_</code>
pattern (which youve seen), using the <code>_</code> pattern within another pattern,
using a name that starts with an underscore, or using <code>..</code> to ignore remaining
parts of a value. Lets explore how and why to use each of these patterns.</p>
<h4><a class="header" href="#ignoring-an-entire-value-with-_" id="ignoring-an-entire-value-with-_">Ignoring an Entire Value with <code>_</code></a></h4>
<p>Weve used the underscore (<code>_</code>) as a wildcard pattern that will match any value
but not bind to the value. Although the underscore <code>_</code> pattern is especially
useful as the last arm in a <code>match</code> expression, we can use it in any pattern,
including function parameters, as shown in Listing 18-17.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn foo(_: i32, y: i32) {
println!(&quot;This code only uses the y parameter: {}&quot;, y);
}
fn main() {
foo(3, 4);
}
</code></pre></pre>
<p><span class="caption">Listing 18-17: Using <code>_</code> in a function signature</span></p>
<p>This code will completely ignore the value passed as the first argument, <code>3</code>,
and will print <code>This code only uses the y parameter: 4</code>.</p>
<p>In most cases when you no longer need a particular function parameter, you
would change the signature so it doesnt include the unused parameter. Ignoring
a function parameter can be especially useful in some cases, for example, when
implementing a trait when you need a certain type signature but the function
body in your implementation doesnt need one of the parameters. The compiler
will then not warn about unused function parameters, as it would if you used a
name instead.</p>
<h4><a class="header" href="#ignoring-parts-of-a-value-with-a-nested-_" id="ignoring-parts-of-a-value-with-a-nested-_">Ignoring Parts of a Value with a Nested <code>_</code></a></h4>
<p>We can also use <code>_</code> inside another pattern to ignore just part of a value, for
example, when we want to test for only part of a value but have no use for the
other parts in the corresponding code we want to run. Listing 18-18 shows code
responsible for managing a settings value. The business requirements are that
the user should not be allowed to overwrite an existing customization of a
setting but can unset the setting and give it a value if it is currently unset.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let mut setting_value = Some(5);
let new_setting_value = Some(10);
match (setting_value, new_setting_value) {
(Some(_), Some(_)) =&gt; {
println!(&quot;Can't overwrite an existing customized value&quot;);
}
_ =&gt; {
setting_value = new_setting_value;
}
}
println!(&quot;setting is {:?}&quot;, setting_value);
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-18: Using an underscore within patterns that
match <code>Some</code> variants when we dont need to use the value inside the
<code>Some</code></span></p>
<p>This code will print <code>Can't overwrite an existing customized value</code> and then
<code>setting is Some(5)</code>. In the first match arm, we dont need to match on or use
the values inside either <code>Some</code> variant, but we do need to test for the case
when <code>setting_value</code> and <code>new_setting_value</code> are the <code>Some</code> variant. In that
case, we print why were not changing <code>setting_value</code>, and it doesnt get
changed.</p>
<p>In all other cases (if either <code>setting_value</code> or <code>new_setting_value</code> are
<code>None</code>) expressed by the <code>_</code> pattern in the second arm, we want to allow
<code>new_setting_value</code> to become <code>setting_value</code>.</p>
<p>We can also use underscores in multiple places within one pattern to ignore
particular values. Listing 18-19 shows an example of ignoring the second and
fourth values in a tuple of five items.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let numbers = (2, 4, 8, 16, 32);
match numbers {
(first, _, third, _, fifth) =&gt; {
println!(&quot;Some numbers: {}, {}, {}&quot;, first, third, fifth)
},
}
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-19: Ignoring multiple parts of a tuple</span></p>
<p>This code will print <code>Some numbers: 2, 8, 32</code>, and the values 4 and 16 will be
ignored.</p>
<h4><a class="header" href="#ignoring-an-unused-variable-by-starting-its-name-with-_" id="ignoring-an-unused-variable-by-starting-its-name-with-_">Ignoring an Unused Variable by Starting Its Name with <code>_</code></a></h4>
<p>If you create a variable but dont use it anywhere, Rust will usually issue a
warning because that could be a bug. But sometimes its useful to create a
variable you wont use yet, such as when youre prototyping or just starting a
project. In this situation, you can tell Rust not to warn you about the unused
variable by starting the name of the variable with an underscore. In Listing
18-20, we create two unused variables, but when we run this code, we should
only get a warning about one of them.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn main() {
let _x = 5;
let y = 10;
}
</code></pre></pre>
<p><span class="caption">Listing 18-20: Starting a variable name with an
underscore to avoid getting unused variable warnings</span></p>
<p>Here we get a warning about not using the variable <code>y</code>, but we dont get a
warning about not using the variable preceded by the underscore.</p>
<p>Note that there is a subtle difference between using only <code>_</code> and using a name
that starts with an underscore. The syntax <code>_x</code> still binds the value to the
variable, whereas <code>_</code> doesnt bind at all. To show a case where this
distinction matters, Listing 18-21 will provide us with an error.</p>
<pre><code class="language-rust ignore does_not_compile">let s = Some(String::from(&quot;Hello!&quot;));
if let Some(_s) = s {
println!(&quot;found a string&quot;);
}
println!(&quot;{:?}&quot;, s);
</code></pre>
<p><span class="caption">Listing 18-21: An unused variable starting with an
underscore still binds the value, which might take ownership of the value</span></p>
<p>Well receive an error because the <code>s</code> value will still be moved into <code>_s</code>,
which prevents us from using <code>s</code> again. However, using the underscore by itself
doesnt ever bind to the value. Listing 18-22 will compile without any errors
because <code>s</code> doesnt get moved into <code>_</code>.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let s = Some(String::from(&quot;Hello!&quot;));
if let Some(_) = s {
println!(&quot;found a string&quot;);
}
println!(&quot;{:?}&quot;, s);
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-22: Using an underscore does not bind the
value</span></p>
<p>This code works just fine because we never bind <code>s</code> to anything; it isnt moved.</p>
<h4><a class="header" href="#ignoring-remaining-parts-of-a-value-with-" id="ignoring-remaining-parts-of-a-value-with-">Ignoring Remaining Parts of a Value with <code>..</code></a></h4>
<p>With values that have many parts, we can use the <code>..</code> syntax to use only a few
parts and ignore the rest, avoiding the need to list underscores for each
ignored value. The <code>..</code> pattern ignores any parts of a value that we havent
explicitly matched in the rest of the pattern. In Listing 18-23, we have a
<code>Point</code> struct that holds a coordinate in three-dimensional space. In the
<code>match</code> expression, we want to operate only on the <code>x</code> coordinate and ignore
the values in the <code>y</code> and <code>z</code> fields.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>struct Point {
x: i32,
y: i32,
z: i32,
}
let origin = Point { x: 0, y: 0, z: 0 };
match origin {
Point { x, .. } =&gt; println!(&quot;x is {}&quot;, x),
}
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-23: Ignoring all fields of a <code>Point</code> except
for <code>x</code> by using <code>..</code></span></p>
<p>We list the <code>x</code> value and then just include the <code>..</code> pattern. This is quicker
than having to list <code>y: _</code> and <code>z: _</code>, particularly when were working with
structs that have lots of fields in situations where only one or two fields are
relevant.</p>
<p>The syntax <code>..</code> will expand to as many values as it needs to be. Listing 18-24
shows how to use <code>..</code> with a tuple.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn main() {
let numbers = (2, 4, 8, 16, 32);
match numbers {
(first, .., last) =&gt; {
println!(&quot;Some numbers: {}, {}&quot;, first, last);
},
}
}
</code></pre></pre>
<p><span class="caption">Listing 18-24: Matching only the first and last values in
a tuple and ignoring all other values</span></p>
<p>In this code, the first and last value are matched with <code>first</code> and <code>last</code>. The
<code>..</code> will match and ignore everything in the middle.</p>
<p>However, using <code>..</code> must be unambiguous. If it is unclear which values are
intended for matching and which should be ignored, Rust will give us an error.
Listing 18-25 shows an example of using <code>..</code> ambiguously, so it will not
compile.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><code class="language-rust ignore does_not_compile">fn main() {
let numbers = (2, 4, 8, 16, 32);
match numbers {
(.., second, ..) =&gt; {
println!(&quot;Some numbers: {}&quot;, second)
},
}
}
</code></pre>
<p><span class="caption">Listing 18-25: An attempt to use <code>..</code> in an ambiguous
way</span></p>
<p>When we compile this example, we get this error:</p>
<pre><code class="language-text">error: `..` can only be used once per tuple or tuple struct pattern
--&gt; src/main.rs:5:22
|
5 | (.., second, ..) =&gt; {
| ^^
</code></pre>
<p>Its impossible for Rust to determine how many values in the tuple to ignore
before matching a value with <code>second</code> and then how many further values to
ignore thereafter. This code could mean that we want to ignore <code>2</code>, bind
<code>second</code> to <code>4</code>, and then ignore <code>8</code>, <code>16</code>, and <code>32</code>; or that we want to ignore
<code>2</code> and <code>4</code>, bind <code>second</code> to <code>8</code>, and then ignore <code>16</code> and <code>32</code>; and so forth.
The variable name <code>second</code> doesnt mean anything special to Rust, so we get a
compiler error because using <code>..</code> in two places like this is ambiguous.</p>
<h3><a class="header" href="#extra-conditionals-with-match-guards" id="extra-conditionals-with-match-guards">Extra Conditionals with Match Guards</a></h3>
<p>A <em>match guard</em> is an additional <code>if</code> condition specified after the pattern in
a <code>match</code> arm that must also match, along with the pattern matching, for that
arm to be chosen. Match guards are useful for expressing more complex ideas
than a pattern alone allows.</p>
<p>The condition can use variables created in the pattern. Listing 18-26 shows a
<code>match</code> where the first arm has the pattern <code>Some(x)</code> and also has a match
guard of <code>if x &lt; 5</code>.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let num = Some(4);
match num {
Some(x) if x &lt; 5 =&gt; println!(&quot;less than five: {}&quot;, x),
Some(x) =&gt; println!(&quot;{}&quot;, x),
None =&gt; (),
}
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-26: Adding a match guard to a pattern</span></p>
<p>This example will print <code>less than five: 4</code>. When <code>num</code> is compared to the
pattern in the first arm, it matches, because <code>Some(4)</code> matches <code>Some(x)</code>. Then
the match guard checks whether the value in <code>x</code> is less than <code>5</code>, and because
it is, the first arm is selected.</p>
<p>If <code>num</code> had been <code>Some(10)</code> instead, the match guard in the first arm would
have been false because 10 is not less than 5. Rust would then go to the second
arm, which would match because the second arm doesnt have a match guard and
therefore matches any <code>Some</code> variant.</p>
<p>There is no way to express the <code>if x &lt; 5</code> condition within a pattern, so the
match guard gives us the ability to express this logic.</p>
<p>In Listing 18-11, we mentioned that we could use match guards to solve our
pattern-shadowing problem. Recall that a new variable was created inside the
pattern in the <code>match</code> expression instead of using the variable outside the
<code>match</code>. That new variable meant we couldnt test against the value of the
outer variable. Listing 18-27 shows how we can use a match guard to fix this
problem.</p>
<p><span class="filename">Filename: src/main.rs</span></p>
<pre><pre class="playpen"><code class="language-rust">fn main() {
let x = Some(5);
let y = 10;
match x {
Some(50) =&gt; println!(&quot;Got 50&quot;),
Some(n) if n == y =&gt; println!(&quot;Matched, n = {}&quot;, n),
_ =&gt; println!(&quot;Default case, x = {:?}&quot;, x),
}
println!(&quot;at the end: x = {:?}, y = {}&quot;, x, y);
}
</code></pre></pre>
<p><span class="caption">Listing 18-27: Using a match guard to test for equality
with an outer variable</span></p>
<p>This code will now print <code>Default case, x = Some(5)</code>. The pattern in the second
match arm doesnt introduce a new variable <code>y</code> that would shadow the outer <code>y</code>,
meaning we can use the outer <code>y</code> in the match guard. Instead of specifying the
pattern as <code>Some(y)</code>, which would have shadowed the outer <code>y</code>, we specify
<code>Some(n)</code>. This creates a new variable <code>n</code> that doesnt shadow anything because
there is no <code>n</code> variable outside the <code>match</code>.</p>
<p>The match guard <code>if n == y</code> is not a pattern and therefore doesnt introduce
new variables. This <code>y</code> <em>is</em> the outer <code>y</code> rather than a new shadowed <code>y</code>, and
we can look for a value that has the same value as the outer <code>y</code> by comparing
<code>n</code> to <code>y</code>.</p>
<p>You can also use the <em>or</em> operator <code>|</code> in a match guard to specify multiple
patterns; the match guard condition will apply to all the patterns. Listing
18-28 shows the precedence of combining a match guard with a pattern that uses
<code>|</code>. The important part of this example is that the <code>if y</code> match guard applies
to <code>4</code>, <code>5</code>, <em>and</em> <code>6</code>, even though it might look like <code>if y</code> only applies to
<code>6</code>.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>let x = 4;
let y = false;
match x {
4 | 5 | 6 if y =&gt; println!(&quot;yes&quot;),
_ =&gt; println!(&quot;no&quot;),
}
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-28: Combining multiple patterns with a match
guard</span></p>
<p>The match condition states that the arm only matches if the value of <code>x</code> is
equal to <code>4</code>, <code>5</code>, or <code>6</code> <em>and</em> if <code>y</code> is <code>true</code>. When this code runs, the
pattern of the first arm matches because <code>x</code> is <code>4</code>, but the match guard <code>if y</code>
is false, so the first arm is not chosen. The code moves on to the second arm,
which does match, and this program prints <code>no</code>. The reason is that the <code>if</code>
condition applies to the whole pattern <code>4 | 5 | 6</code>, not only to the last value
<code>6</code>. In other words, the precedence of a match guard in relation to a pattern
behaves like this:</p>
<pre><code class="language-text">(4 | 5 | 6) if y =&gt; ...
</code></pre>
<p>rather than this:</p>
<pre><code class="language-text">4 | 5 | (6 if y) =&gt; ...
</code></pre>
<p>After running the code, the precedence behavior is evident: if the match guard
were applied only to the final value in the list of values specified using the
<code>|</code> operator, the arm would have matched and the program would have printed
<code>yes</code>.</p>
<h3><a class="header" href="#-bindings" id="-bindings"><code>@</code> Bindings</a></h3>
<p>The <em>at</em> operator (<code>@</code>) lets us create a variable that holds a value at the
same time were testing that value to see whether it matches a pattern. Listing
18-29 shows an example where we want to test that a <code>Message::Hello</code> <code>id</code> field
is within the range <code>3..=7</code>. But we also want to bind the value to the variable
<code>id_variable</code> so we can use it in the code associated with the arm. We could
name this variable <code>id</code>, the same as the field, but for this example well use
a different name.</p>
<pre><pre class="playpen"><code class="language-rust">
<span class="boring">#![allow(unused_variables)]
</span><span class="boring">fn main() {
</span>enum Message {
Hello { id: i32 },
}
let msg = Message::Hello { id: 5 };
match msg {
Message::Hello { id: id_variable @ 3..=7 } =&gt; {
println!(&quot;Found an id in range: {}&quot;, id_variable)
},
Message::Hello { id: 10..=12 } =&gt; {
println!(&quot;Found an id in another range&quot;)
},
Message::Hello { id } =&gt; {
println!(&quot;Found some other id: {}&quot;, id)
},
}
<span class="boring">}
</span></code></pre></pre>
<p><span class="caption">Listing 18-29: Using <code>@</code> to bind to a value in a pattern
while also testing it</span></p>
<p>This example will print <code>Found an id in range: 5</code>. By specifying <code>id_variable @</code> before the range <code>3..=7</code>, were capturing whatever value matched the range
while also testing that the value matched the range pattern.</p>
<p>In the second arm, where we only have a range specified in the pattern, the code
associated with the arm doesnt have a variable that contains the actual value
of the <code>id</code> field. The <code>id</code> fields value could have been 10, 11, or 12, but
the code that goes with that pattern doesnt know which it is. The pattern code
isnt able to use the value from the <code>id</code> field, because we havent saved the
<code>id</code> value in a variable.</p>
<p>In the last arm, where weve specified a variable without a range, we do have
the value available to use in the arms code in a variable named <code>id</code>. The
reason is that weve used the struct field shorthand syntax. But we havent
applied any test to the value in the <code>id</code> field in this arm, as we did with the
first two arms: any value would match this pattern.</p>
<p>Using <code>@</code> lets us test a value and save it in a variable within one pattern.</p>
<h2><a class="header" href="#summary" id="summary">Summary</a></h2>
<p>Rusts patterns are very useful in that they help distinguish between different
kinds of data. When used in <code>match</code> expressions, Rust ensures your patterns
cover every possible value, or your program wont compile. Patterns in <code>let</code>
statements and function parameters make those constructs more useful, enabling
the destructuring of values into smaller parts at the same time as assigning to
variables. We can create simple or complex patterns to suit our needs.</p>
<p>Next, for the penultimate chapter of the book, well look at some advanced
aspects of a variety of Rusts features.</p>
</main>
<nav class="nav-wrapper" aria-label="Page navigation">
<!-- Mobile navigation buttons -->
<a rel="prev" href="ch18-02-refutability.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a rel="next" href="ch19-00-advanced-features.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
<div style="clear: both"></div>
</nav>
</div>
</div>
<nav class="nav-wide-wrapper" aria-label="Page navigation">
<a href="ch18-02-refutability.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
<a href="ch19-00-advanced-features.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
</nav>
</div>
<script type="text/javascript">
window.playpen_copyable = true;
</script>
<script src="elasticlunr.min.js" type="text/javascript" charset="utf-8"></script>
<script src="mark.min.js" type="text/javascript" charset="utf-8"></script>
<script src="searcher.js" type="text/javascript" charset="utf-8"></script>
<script src="clipboard.min.js" type="text/javascript" charset="utf-8"></script>
<script src="highlight.js" type="text/javascript" charset="utf-8"></script>
<script src="book.js" type="text/javascript" charset="utf-8"></script>
<!-- Custom JS scripts -->
<script type="text/javascript" src="ferris.js"></script>
</body>
</html>