<!DOCTYPE HTML> <html lang="en" class="sidebar-visible no-js light"> <head> <!-- Book generated using mdBook --> <meta charset="UTF-8"> <title>Unsafe Rust - The Rust Programming Language</title> <meta content="text/html; charset=utf-8" http-equiv="Content-Type"> <meta name="description" content=""> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="theme-color" content="#ffffff" /> <link rel="shortcut icon" href="favicon.png"> <link rel="stylesheet" href="css/variables.css"> <link rel="stylesheet" href="css/general.css"> <link rel="stylesheet" href="css/chrome.css"> <link rel="stylesheet" href="css/print.css" media="print"> <!-- Fonts --> <link rel="stylesheet" href="FontAwesome/css/font-awesome.css"> <link href="googleFonts/css.css" rel="stylesheet" type="text/css"> <!-- Highlight.js Stylesheets --> <link rel="stylesheet" href="highlight.css"> <link rel="stylesheet" href="tomorrow-night.css"> <link rel="stylesheet" href="ayu-highlight.css"> <!-- Custom theme stylesheets --> <link rel="stylesheet" href="ferris.css"> <link rel="stylesheet" href="theme/2018-edition.css"> </head> <body> <!-- Provide site root to javascript --> <script type="text/javascript"> var path_to_root = ""; var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "light" : "light"; </script> <!-- Work around some values being stored in localStorage wrapped in quotes --> <script type="text/javascript"> try { var theme = localStorage.getItem('mdbook-theme'); var sidebar = localStorage.getItem('mdbook-sidebar'); if (theme.startsWith('"') && theme.endsWith('"')) { localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1)); } if (sidebar.startsWith('"') && sidebar.endsWith('"')) { localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1)); } } catch (e) { } </script> <!-- Set the theme before any content is loaded, prevents flash --> <script type="text/javascript"> var theme; try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { } if (theme === null || theme === undefined) { theme = default_theme; } var html = document.querySelector('html'); html.classList.remove('no-js') html.classList.remove('light') html.classList.add(theme); html.classList.add('js'); </script> <!-- Hide / unhide sidebar before it is displayed --> <script type="text/javascript"> var html = document.querySelector('html'); var sidebar = 'hidden'; if (document.body.clientWidth >= 1080) { try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { } sidebar = sidebar || 'visible'; } html.classList.remove('sidebar-visible'); html.classList.add("sidebar-" + sidebar); </script> <nav id="sidebar" class="sidebar" aria-label="Table of contents"> <div id="sidebar-scrollbox" class="sidebar-scrollbox"> <ol class="chapter"><li class="expanded affix "><a href="title-page.html">The Rust Programming Language</a></li><li class="expanded affix "><a href="foreword.html">Foreword</a></li><li class="expanded affix "><a href="ch00-00-introduction.html">Introduction</a></li><li class="expanded "><a href="ch01-00-getting-started.html"><strong aria-hidden="true">1.</strong> Getting Started</a></li><li><ol class="section"><li class="expanded "><a href="ch01-01-installation.html"><strong aria-hidden="true">1.1.</strong> Installation</a></li><li class="expanded "><a href="ch01-02-hello-world.html"><strong aria-hidden="true">1.2.</strong> Hello, World!</a></li><li class="expanded "><a href="ch01-03-hello-cargo.html"><strong aria-hidden="true">1.3.</strong> Hello, Cargo!</a></li></ol></li><li class="expanded "><a href="ch02-00-guessing-game-tutorial.html"><strong aria-hidden="true">2.</strong> Programming a Guessing Game</a></li><li class="expanded "><a href="ch03-00-common-programming-concepts.html"><strong aria-hidden="true">3.</strong> Common Programming Concepts</a></li><li><ol class="section"><li class="expanded "><a href="ch03-01-variables-and-mutability.html"><strong aria-hidden="true">3.1.</strong> Variables and Mutability</a></li><li class="expanded "><a href="ch03-02-data-types.html"><strong aria-hidden="true">3.2.</strong> Data Types</a></li><li class="expanded "><a href="ch03-03-how-functions-work.html"><strong aria-hidden="true">3.3.</strong> Functions</a></li><li class="expanded "><a href="ch03-04-comments.html"><strong aria-hidden="true">3.4.</strong> Comments</a></li><li class="expanded "><a href="ch03-05-control-flow.html"><strong aria-hidden="true">3.5.</strong> Control Flow</a></li></ol></li><li class="expanded "><a href="ch04-00-understanding-ownership.html"><strong aria-hidden="true">4.</strong> Understanding Ownership</a></li><li><ol class="section"><li class="expanded "><a href="ch04-01-what-is-ownership.html"><strong aria-hidden="true">4.1.</strong> What is Ownership?</a></li><li class="expanded "><a href="ch04-02-references-and-borrowing.html"><strong aria-hidden="true">4.2.</strong> References and Borrowing</a></li><li class="expanded "><a href="ch04-03-slices.html"><strong aria-hidden="true">4.3.</strong> The Slice Type</a></li></ol></li><li class="expanded "><a href="ch05-00-structs.html"><strong aria-hidden="true">5.</strong> Using Structs to Structure Related Data</a></li><li><ol class="section"><li class="expanded "><a href="ch05-01-defining-structs.html"><strong aria-hidden="true">5.1.</strong> Defining and Instantiating Structs</a></li><li class="expanded "><a href="ch05-02-example-structs.html"><strong aria-hidden="true">5.2.</strong> An Example Program Using Structs</a></li><li class="expanded "><a href="ch05-03-method-syntax.html"><strong aria-hidden="true">5.3.</strong> Method Syntax</a></li></ol></li><li class="expanded "><a href="ch06-00-enums.html"><strong aria-hidden="true">6.</strong> Enums and Pattern Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch06-01-defining-an-enum.html"><strong aria-hidden="true">6.1.</strong> Defining an Enum</a></li><li class="expanded "><a href="ch06-02-match.html"><strong aria-hidden="true">6.2.</strong> The match Control Flow Operator</a></li><li class="expanded "><a href="ch06-03-if-let.html"><strong aria-hidden="true">6.3.</strong> Concise Control Flow with if let</a></li></ol></li><li class="expanded "><a href="ch07-00-managing-growing-projects-with-packages-crates-and-modules.html"><strong aria-hidden="true">7.</strong> Managing Growing Projects with Packages, Crates, and Modules</a></li><li><ol class="section"><li class="expanded "><a href="ch07-01-packages-and-crates.html"><strong aria-hidden="true">7.1.</strong> Packages and Crates</a></li><li class="expanded "><a href="ch07-02-defining-modules-to-control-scope-and-privacy.html"><strong aria-hidden="true">7.2.</strong> Defining Modules to Control Scope and Privacy</a></li><li class="expanded "><a href="ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html"><strong aria-hidden="true">7.3.</strong> Paths for Referring to an Item in the Module Tree</a></li><li class="expanded "><a href="ch07-04-bringing-paths-into-scope-with-the-use-keyword.html"><strong aria-hidden="true">7.4.</strong> Bringing Paths Into Scope with the use Keyword</a></li><li class="expanded "><a href="ch07-05-separating-modules-into-different-files.html"><strong aria-hidden="true">7.5.</strong> Separating Modules into Different Files</a></li></ol></li><li class="expanded "><a href="ch08-00-common-collections.html"><strong aria-hidden="true">8.</strong> Common Collections</a></li><li><ol class="section"><li class="expanded "><a href="ch08-01-vectors.html"><strong aria-hidden="true">8.1.</strong> Storing Lists of Values with Vectors</a></li><li class="expanded "><a href="ch08-02-strings.html"><strong aria-hidden="true">8.2.</strong> Storing UTF-8 Encoded Text with Strings</a></li><li class="expanded "><a href="ch08-03-hash-maps.html"><strong aria-hidden="true">8.3.</strong> Storing Keys with Associated Values in Hash Maps</a></li></ol></li><li class="expanded "><a href="ch09-00-error-handling.html"><strong aria-hidden="true">9.</strong> Error Handling</a></li><li><ol class="section"><li class="expanded "><a href="ch09-01-unrecoverable-errors-with-panic.html"><strong aria-hidden="true">9.1.</strong> Unrecoverable Errors with panic!</a></li><li class="expanded "><a href="ch09-02-recoverable-errors-with-result.html"><strong aria-hidden="true">9.2.</strong> Recoverable Errors with Result</a></li><li class="expanded "><a href="ch09-03-to-panic-or-not-to-panic.html"><strong aria-hidden="true">9.3.</strong> To panic! or Not To panic!</a></li></ol></li><li class="expanded "><a href="ch10-00-generics.html"><strong aria-hidden="true">10.</strong> Generic Types, Traits, and Lifetimes</a></li><li><ol class="section"><li class="expanded "><a href="ch10-01-syntax.html"><strong aria-hidden="true">10.1.</strong> Generic Data Types</a></li><li class="expanded "><a href="ch10-02-traits.html"><strong aria-hidden="true">10.2.</strong> Traits: Defining Shared Behavior</a></li><li class="expanded "><a href="ch10-03-lifetime-syntax.html"><strong aria-hidden="true">10.3.</strong> Validating References with Lifetimes</a></li></ol></li><li class="expanded "><a href="ch11-00-testing.html"><strong aria-hidden="true">11.</strong> Writing Automated Tests</a></li><li><ol class="section"><li class="expanded "><a href="ch11-01-writing-tests.html"><strong aria-hidden="true">11.1.</strong> How to Write Tests</a></li><li class="expanded "><a href="ch11-02-running-tests.html"><strong aria-hidden="true">11.2.</strong> Controlling How Tests Are Run</a></li><li class="expanded "><a href="ch11-03-test-organization.html"><strong aria-hidden="true">11.3.</strong> Test Organization</a></li></ol></li><li class="expanded "><a href="ch12-00-an-io-project.html"><strong aria-hidden="true">12.</strong> An I/O Project: Building a Command Line Program</a></li><li><ol class="section"><li class="expanded "><a href="ch12-01-accepting-command-line-arguments.html"><strong aria-hidden="true">12.1.</strong> Accepting Command Line Arguments</a></li><li class="expanded "><a href="ch12-02-reading-a-file.html"><strong aria-hidden="true">12.2.</strong> Reading a File</a></li><li class="expanded "><a href="ch12-03-improving-error-handling-and-modularity.html"><strong aria-hidden="true">12.3.</strong> Refactoring to Improve Modularity and Error Handling</a></li><li class="expanded "><a href="ch12-04-testing-the-librarys-functionality.html"><strong aria-hidden="true">12.4.</strong> Developing the Library’s Functionality with Test Driven Development</a></li><li class="expanded "><a href="ch12-05-working-with-environment-variables.html"><strong aria-hidden="true">12.5.</strong> Working with Environment Variables</a></li><li class="expanded "><a href="ch12-06-writing-to-stderr-instead-of-stdout.html"><strong aria-hidden="true">12.6.</strong> Writing Error Messages to Standard Error Instead of Standard Output</a></li></ol></li><li class="expanded "><a href="ch13-00-functional-features.html"><strong aria-hidden="true">13.</strong> Functional Language Features: Iterators and Closures</a></li><li><ol class="section"><li class="expanded "><a href="ch13-01-closures.html"><strong aria-hidden="true">13.1.</strong> Closures: Anonymous Functions that Can Capture Their Environment</a></li><li class="expanded "><a href="ch13-02-iterators.html"><strong aria-hidden="true">13.2.</strong> Processing a Series of Items with Iterators</a></li><li class="expanded "><a href="ch13-03-improving-our-io-project.html"><strong aria-hidden="true">13.3.</strong> Improving Our I/O Project</a></li><li class="expanded "><a href="ch13-04-performance.html"><strong aria-hidden="true">13.4.</strong> Comparing Performance: Loops vs. Iterators</a></li></ol></li><li class="expanded "><a href="ch14-00-more-about-cargo.html"><strong aria-hidden="true">14.</strong> More about Cargo and Crates.io</a></li><li><ol class="section"><li class="expanded "><a href="ch14-01-release-profiles.html"><strong aria-hidden="true">14.1.</strong> Customizing Builds with Release Profiles</a></li><li class="expanded "><a href="ch14-02-publishing-to-crates-io.html"><strong aria-hidden="true">14.2.</strong> Publishing a Crate to Crates.io</a></li><li class="expanded "><a href="ch14-03-cargo-workspaces.html"><strong aria-hidden="true">14.3.</strong> Cargo Workspaces</a></li><li class="expanded "><a href="ch14-04-installing-binaries.html"><strong aria-hidden="true">14.4.</strong> Installing Binaries from Crates.io with cargo install</a></li><li class="expanded "><a href="ch14-05-extending-cargo.html"><strong aria-hidden="true">14.5.</strong> Extending Cargo with Custom Commands</a></li></ol></li><li class="expanded "><a href="ch15-00-smart-pointers.html"><strong aria-hidden="true">15.</strong> Smart Pointers</a></li><li><ol class="section"><li class="expanded "><a href="ch15-01-box.html"><strong aria-hidden="true">15.1.</strong> Using Box<T> to Point to Data on the Heap</a></li><li class="expanded "><a href="ch15-02-deref.html"><strong aria-hidden="true">15.2.</strong> Treating Smart Pointers Like Regular References with the Deref Trait</a></li><li class="expanded "><a href="ch15-03-drop.html"><strong aria-hidden="true">15.3.</strong> Running Code on Cleanup with the Drop Trait</a></li><li class="expanded "><a href="ch15-04-rc.html"><strong aria-hidden="true">15.4.</strong> Rc<T>, the Reference Counted Smart Pointer</a></li><li class="expanded "><a href="ch15-05-interior-mutability.html"><strong aria-hidden="true">15.5.</strong> RefCell<T> and the Interior Mutability Pattern</a></li><li class="expanded "><a href="ch15-06-reference-cycles.html"><strong aria-hidden="true">15.6.</strong> Reference Cycles Can Leak Memory</a></li></ol></li><li class="expanded "><a href="ch16-00-concurrency.html"><strong aria-hidden="true">16.</strong> Fearless Concurrency</a></li><li><ol class="section"><li class="expanded "><a href="ch16-01-threads.html"><strong aria-hidden="true">16.1.</strong> Using Threads to Run Code Simultaneously</a></li><li class="expanded "><a href="ch16-02-message-passing.html"><strong aria-hidden="true">16.2.</strong> Using Message Passing to Transfer Data Between Threads</a></li><li class="expanded "><a href="ch16-03-shared-state.html"><strong aria-hidden="true">16.3.</strong> Shared-State Concurrency</a></li><li class="expanded "><a href="ch16-04-extensible-concurrency-sync-and-send.html"><strong aria-hidden="true">16.4.</strong> Extensible Concurrency with the Sync and Send Traits</a></li></ol></li><li class="expanded "><a href="ch17-00-oop.html"><strong aria-hidden="true">17.</strong> Object Oriented Programming Features of Rust</a></li><li><ol class="section"><li class="expanded "><a href="ch17-01-what-is-oo.html"><strong aria-hidden="true">17.1.</strong> Characteristics of Object-Oriented Languages</a></li><li class="expanded "><a href="ch17-02-trait-objects.html"><strong aria-hidden="true">17.2.</strong> Using Trait Objects That Allow for Values of Different Types</a></li><li class="expanded "><a href="ch17-03-oo-design-patterns.html"><strong aria-hidden="true">17.3.</strong> Implementing an Object-Oriented Design Pattern</a></li></ol></li><li class="expanded "><a href="ch18-00-patterns.html"><strong aria-hidden="true">18.</strong> Patterns and Matching</a></li><li><ol class="section"><li class="expanded "><a href="ch18-01-all-the-places-for-patterns.html"><strong aria-hidden="true">18.1.</strong> All the Places Patterns Can Be Used</a></li><li class="expanded "><a href="ch18-02-refutability.html"><strong aria-hidden="true">18.2.</strong> Refutability: Whether a Pattern Might Fail to Match</a></li><li class="expanded "><a href="ch18-03-pattern-syntax.html"><strong aria-hidden="true">18.3.</strong> Pattern Syntax</a></li></ol></li><li class="expanded "><a href="ch19-00-advanced-features.html"><strong aria-hidden="true">19.</strong> Advanced Features</a></li><li><ol class="section"><li class="expanded "><a href="ch19-01-unsafe-rust.html" class="active"><strong aria-hidden="true">19.1.</strong> Unsafe Rust</a></li><li class="expanded "><a href="ch19-03-advanced-traits.html"><strong aria-hidden="true">19.2.</strong> Advanced Traits</a></li><li class="expanded "><a href="ch19-04-advanced-types.html"><strong aria-hidden="true">19.3.</strong> Advanced Types</a></li><li class="expanded "><a href="ch19-05-advanced-functions-and-closures.html"><strong aria-hidden="true">19.4.</strong> Advanced Functions and Closures</a></li><li class="expanded "><a href="ch19-06-macros.html"><strong aria-hidden="true">19.5.</strong> Macros</a></li></ol></li><li class="expanded "><a href="ch20-00-final-project-a-web-server.html"><strong aria-hidden="true">20.</strong> Final Project: Building a Multithreaded Web Server</a></li><li><ol class="section"><li class="expanded "><a href="ch20-01-single-threaded.html"><strong aria-hidden="true">20.1.</strong> Building a Single-Threaded Web Server</a></li><li class="expanded "><a href="ch20-02-multithreaded.html"><strong aria-hidden="true">20.2.</strong> Turning Our Single-Threaded Server into a Multithreaded Server</a></li><li class="expanded "><a href="ch20-03-graceful-shutdown-and-cleanup.html"><strong aria-hidden="true">20.3.</strong> Graceful Shutdown and Cleanup</a></li></ol></li><li class="expanded "><a href="appendix-00.html"><strong aria-hidden="true">21.</strong> Appendix</a></li><li><ol class="section"><li class="expanded "><a href="appendix-01-keywords.html"><strong aria-hidden="true">21.1.</strong> A - Keywords</a></li><li class="expanded "><a href="appendix-02-operators.html"><strong aria-hidden="true">21.2.</strong> B - Operators and Symbols</a></li><li class="expanded "><a href="appendix-03-derivable-traits.html"><strong aria-hidden="true">21.3.</strong> C - Derivable Traits</a></li><li class="expanded "><a href="appendix-04-useful-development-tools.html"><strong aria-hidden="true">21.4.</strong> D - Useful Development Tools</a></li><li class="expanded "><a href="appendix-05-editions.html"><strong aria-hidden="true">21.5.</strong> E - Editions</a></li><li class="expanded "><a href="appendix-06-translation.html"><strong aria-hidden="true">21.6.</strong> F - Translations of the Book</a></li><li class="expanded "><a href="appendix-07-nightly-rust.html"><strong aria-hidden="true">21.7.</strong> G - How Rust is Made and “Nightly Rust”</a></li></ol></li></ol> </div> <div id="sidebar-resize-handle" class="sidebar-resize-handle"></div> </nav> <div id="page-wrapper" class="page-wrapper"> <div class="page"> <div id="menu-bar" class="menu-bar"> <div id="menu-bar-sticky-container"> <div class="left-buttons"> <button id="sidebar-toggle" class="icon-button" type="button" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar"> <i class="fa fa-bars"></i> </button> <button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list"> <i class="fa fa-paint-brush"></i> </button> <ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu"> <li role="none"><button role="menuitem" class="theme" id="light">Light (default)</button></li> <li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li> <li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li> <li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li> <li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li> </ul> <button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar"> <i class="fa fa-search"></i> </button> </div> <h1 class="menu-title">The Rust Programming Language</h1> <div class="right-buttons"> <a href="print.html" title="Print this book" aria-label="Print this book"> <i id="print-button" class="fa fa-print"></i> </a> </div> </div> </div> <div id="search-wrapper" class="hidden"> <form id="searchbar-outer" class="searchbar-outer"> <input type="search" name="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header"> </form> <div id="searchresults-outer" class="searchresults-outer hidden"> <div id="searchresults-header" class="searchresults-header"></div> <ul id="searchresults"> </ul> </div> </div> <!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM --> <script type="text/javascript"> document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible'); document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible'); Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) { link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1); }); </script> <div id="content" class="content"> <main> <h2><a class="header" href="#unsafe-rust" id="unsafe-rust">Unsafe Rust</a></h2> <p>All the code we’ve discussed so far has had Rust’s memory safety guarantees enforced at compile time. However, Rust has a second language hidden inside it that doesn’t enforce these memory safety guarantees: it’s called <em>unsafe Rust</em> and works just like regular Rust, but gives us extra superpowers.</p> <p>Unsafe Rust exists because, by nature, static analysis is conservative. When the compiler tries to determine whether or not code upholds the guarantees, it’s better for it to reject some valid programs rather than accept some invalid programs. Although the code might be okay, as far as Rust is able to tell, it’s not! In these cases, you can use unsafe code to tell the compiler, “Trust me, I know what I’m doing.” The downside is that you use it at your own risk: if you use unsafe code incorrectly, problems due to memory unsafety, such as null pointer dereferencing, can occur.</p> <p>Another reason Rust has an unsafe alter ego is that the underlying computer hardware is inherently unsafe. If Rust didn’t let you do unsafe operations, you couldn’t do certain tasks. Rust needs to allow you to do low-level systems programming, such as directly interacting with the operating system or even writing your own operating system. Working with low-level systems programming is one of the goals of the language. Let’s explore what we can do with unsafe Rust and how to do it.</p> <h3><a class="header" href="#unsafe-superpowers" id="unsafe-superpowers">Unsafe Superpowers</a></h3> <p>To switch to unsafe Rust, use the <code>unsafe</code> keyword and then start a new block that holds the unsafe code. You can take four actions in unsafe Rust, called <em>unsafe superpowers</em>, that you can’t in safe Rust. Those superpowers include the ability to:</p> <ul> <li>Dereference a raw pointer</li> <li>Call an unsafe function or method</li> <li>Access or modify a mutable static variable</li> <li>Implement an unsafe trait</li> <li>Access fields of <code>union</code>s</li> </ul> <p>It’s important to understand that <code>unsafe</code> doesn’t turn off the borrow checker or disable any other of Rust’s safety checks: if you use a reference in unsafe code, it will still be checked. The <code>unsafe</code> keyword only gives you access to these four features that are then not checked by the compiler for memory safety. You’ll still get some degree of safety inside of an unsafe block.</p> <p>In addition, <code>unsafe</code> does not mean the code inside the block is necessarily dangerous or that it will definitely have memory safety problems: the intent is that as the programmer, you’ll ensure the code inside an <code>unsafe</code> block will access memory in a valid way.</p> <p>People are fallible, and mistakes will happen, but by requiring these four unsafe operations to be inside blocks annotated with <code>unsafe</code> you’ll know that any errors related to memory safety must be within an <code>unsafe</code> block. Keep <code>unsafe</code> blocks small; you’ll be thankful later when you investigate memory bugs.</p> <p>To isolate unsafe code as much as possible, it’s best to enclose unsafe code within a safe abstraction and provide a safe API, which we’ll discuss later in the chapter when we examine unsafe functions and methods. Parts of the standard library are implemented as safe abstractions over unsafe code that has been audited. Wrapping unsafe code in a safe abstraction prevents uses of <code>unsafe</code> from leaking out into all the places that you or your users might want to use the functionality implemented with <code>unsafe</code> code, because using a safe abstraction is safe.</p> <p>Let’s look at each of the four unsafe superpowers in turn. We’ll also look at some abstractions that provide a safe interface to unsafe code.</p> <h3><a class="header" href="#dereferencing-a-raw-pointer" id="dereferencing-a-raw-pointer">Dereferencing a Raw Pointer</a></h3> <p>In Chapter 4, in the <a href="ch04-02-references-and-borrowing.html#dangling-references">“Dangling References”</a><!-- ignore --> section, we mentioned that the compiler ensures references are always valid. Unsafe Rust has two new types called <em>raw pointers</em> that are similar to references. As with references, raw pointers can be immutable or mutable and are written as <code>*const T</code> and <code>*mut T</code>, respectively. The asterisk isn’t the dereference operator; it’s part of the type name. In the context of raw pointers, <em>immutable</em> means that the pointer can’t be directly assigned to after being dereferenced.</p> <p>Different from references and smart pointers, raw pointers:</p> <ul> <li>Are allowed to ignore the borrowing rules by having both immutable and mutable pointers or multiple mutable pointers to the same location</li> <li>Aren’t guaranteed to point to valid memory</li> <li>Are allowed to be null</li> <li>Don’t implement any automatic cleanup</li> </ul> <p>By opting out of having Rust enforce these guarantees, you can give up guaranteed safety in exchange for greater performance or the ability to interface with another language or hardware where Rust’s guarantees don’t apply.</p> <p>Listing 19-1 shows how to create an immutable and a mutable raw pointer from references.</p> <pre><pre class="playpen"><code class="language-rust"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>let mut num = 5; let r1 = &num as *const i32; let r2 = &mut num as *mut i32; <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-1: Creating raw pointers from references</span></p> <p>Notice that we don’t include the <code>unsafe</code> keyword in this code. We can create raw pointers in safe code; we just can’t dereference raw pointers outside an unsafe block, as you’ll see in a bit.</p> <p>We’ve created raw pointers by using <code>as</code> to cast an immutable and a mutable reference into their corresponding raw pointer types. Because we created them directly from references guaranteed to be valid, we know these particular raw pointers are valid, but we can’t make that assumption about just any raw pointer.</p> <p>Next, we’ll create a raw pointer whose validity we can’t be so certain of. Listing 19-2 shows how to create a raw pointer to an arbitrary location in memory. Trying to use arbitrary memory is undefined: there might be data at that address or there might not, the compiler might optimize the code so there is no memory access, or the program might error with a segmentation fault. Usually, there is no good reason to write code like this, but it is possible.</p> <pre><pre class="playpen"><code class="language-rust"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>let address = 0x012345usize; let r = address as *const i32; <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-2: Creating a raw pointer to an arbitrary memory address</span></p> <p>Recall that we can create raw pointers in safe code, but we can’t <em>dereference</em> raw pointers and read the data being pointed to. In Listing 19-3, we use the dereference operator <code>*</code> on a raw pointer that requires an <code>unsafe</code> block.</p> <pre><pre class="playpen"><code class="language-rust unsafe"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>let mut num = 5; let r1 = &num as *const i32; let r2 = &mut num as *mut i32; unsafe { println!("r1 is: {}", *r1); println!("r2 is: {}", *r2); } <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-3: Dereferencing raw pointers within an <code>unsafe</code> block</span></p> <p>Creating a pointer does no harm; it’s only when we try to access the value that it points at that we might end up dealing with an invalid value.</p> <p>Note also that in Listing 19-1 and 19-3, we created <code>*const i32</code> and <code>*mut i32</code> raw pointers that both pointed to the same memory location, where <code>num</code> is stored. If we instead tried to create an immutable and a mutable reference to <code>num</code>, the code would not have compiled because Rust’s ownership rules don’t allow a mutable reference at the same time as any immutable references. With raw pointers, we can create a mutable pointer and an immutable pointer to the same location and change data through the mutable pointer, potentially creating a data race. Be careful!</p> <p>With all of these dangers, why would you ever use raw pointers? One major use case is when interfacing with C code, as you’ll see in the next section, <a href="#calling-an-unsafe-function-or-method">“Calling an Unsafe Function or Method.”</a><!-- ignore --> Another case is when building up safe abstractions that the borrow checker doesn’t understand. We’ll introduce unsafe functions and then look at an example of a safe abstraction that uses unsafe code.</p> <h3><a class="header" href="#calling-an-unsafe-function-or-method" id="calling-an-unsafe-function-or-method">Calling an Unsafe Function or Method</a></h3> <p>The second type of operation that requires an unsafe block is calls to unsafe functions. Unsafe functions and methods look exactly like regular functions and methods, but they have an extra <code>unsafe</code> before the rest of the definition. The <code>unsafe</code> keyword in this context indicates the function has requirements we need to uphold when we call this function, because Rust can’t guarantee we’ve met these requirements. By calling an unsafe function within an <code>unsafe</code> block, we’re saying that we’ve read this function’s documentation and take responsibility for upholding the function’s contracts.</p> <p>Here is an unsafe function named <code>dangerous</code> that doesn’t do anything in its body:</p> <pre><pre class="playpen"><code class="language-rust unsafe"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>unsafe fn dangerous() {} unsafe { dangerous(); } <span class="boring">} </span></code></pre></pre> <p>We must call the <code>dangerous</code> function within a separate <code>unsafe</code> block. If we try to call <code>dangerous</code> without the <code>unsafe</code> block, we’ll get an error:</p> <pre><code class="language-text">error[E0133]: call to unsafe function requires unsafe function or block --> | 4 | dangerous(); | ^^^^^^^^^^^ call to unsafe function </code></pre> <p>By inserting the <code>unsafe</code> block around our call to <code>dangerous</code>, we’re asserting to Rust that we’ve read the function’s documentation, we understand how to use it properly, and we’ve verified that we’re fulfilling the contract of the function.</p> <p>Bodies of unsafe functions are effectively <code>unsafe</code> blocks, so to perform other unsafe operations within an unsafe function, we don’t need to add another <code>unsafe</code> block.</p> <h4><a class="header" href="#creating-a-safe-abstraction-over-unsafe-code" id="creating-a-safe-abstraction-over-unsafe-code">Creating a Safe Abstraction over Unsafe Code</a></h4> <p>Just because a function contains unsafe code doesn’t mean we need to mark the entire function as unsafe. In fact, wrapping unsafe code in a safe function is a common abstraction. As an example, let’s study a function from the standard library, <code>split_at_mut</code>, that requires some unsafe code and explore how we might implement it. This safe method is defined on mutable slices: it takes one slice and makes it two by splitting the slice at the index given as an argument. Listing 19-4 shows how to use <code>split_at_mut</code>.</p> <pre><pre class="playpen"><code class="language-rust"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>let mut v = vec![1, 2, 3, 4, 5, 6]; let r = &mut v[..]; let (a, b) = r.split_at_mut(3); assert_eq!(a, &mut [1, 2, 3]); assert_eq!(b, &mut [4, 5, 6]); <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-4: Using the safe <code>split_at_mut</code> function</span></p> <p>We can’t implement this function using only safe Rust. An attempt might look something like Listing 19-5, which won’t compile. For simplicity, we’ll implement <code>split_at_mut</code> as a function rather than a method and only for slices of <code>i32</code> values rather than for a generic type <code>T</code>.</p> <pre><code class="language-rust ignore does_not_compile">fn split_at_mut(slice: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) { let len = slice.len(); assert!(mid <= len); (&mut slice[..mid], &mut slice[mid..]) } </code></pre> <p><span class="caption">Listing 19-5: An attempted implementation of <code>split_at_mut</code> using only safe Rust</span></p> <p>This function first gets the total length of the slice. Then it asserts that the index given as a parameter is within the slice by checking whether it’s less than or equal to the length. The assertion means that if we pass an index that is greater than the length to split the slice at, the function will panic before it attempts to use that index.</p> <p>Then we return two mutable slices in a tuple: one from the start of the original slice to the <code>mid</code> index and another from <code>mid</code> to the end of the slice.</p> <p>When we try to compile the code in Listing 19-5, we’ll get an error.</p> <pre><code class="language-text">error[E0499]: cannot borrow `*slice` as mutable more than once at a time --> | 6 | (&mut slice[..mid], | ----- first mutable borrow occurs here 7 | &mut slice[mid..]) | ^^^^^ second mutable borrow occurs here 8 | } | - first borrow ends here </code></pre> <p>Rust’s borrow checker can’t understand that we’re borrowing different parts of the slice; it only knows that we’re borrowing from the same slice twice. Borrowing different parts of a slice is fundamentally okay because the two slices aren’t overlapping, but Rust isn’t smart enough to know this. When we know code is okay, but Rust doesn’t, it’s time to reach for unsafe code.</p> <p>Listing 19-6 shows how to use an <code>unsafe</code> block, a raw pointer, and some calls to unsafe functions to make the implementation of <code>split_at_mut</code> work.</p> <pre><pre class="playpen"><code class="language-rust unsafe"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>use std::slice; fn split_at_mut(slice: &mut [i32], mid: usize) -> (&mut [i32], &mut [i32]) { let len = slice.len(); let ptr = slice.as_mut_ptr(); assert!(mid <= len); unsafe { (slice::from_raw_parts_mut(ptr, mid), slice::from_raw_parts_mut(ptr.offset(mid as isize), len - mid)) } } <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-6: Using unsafe code in the implementation of the <code>split_at_mut</code> function</span></p> <p>Recall from <a href="ch04-03-slices.html#the-slice-type">“The Slice Type”</a><!-- ignore --> section in Chapter 4 that slices are a pointer to some data and the length of the slice. We use the <code>len</code> method to get the length of a slice and the <code>as_mut_ptr</code> method to access the raw pointer of a slice. In this case, because we have a mutable slice to <code>i32</code> values, <code>as_mut_ptr</code> returns a raw pointer with the type <code>*mut i32</code>, which we’ve stored in the variable <code>ptr</code>.</p> <p>We keep the assertion that the <code>mid</code> index is within the slice. Then we get to the unsafe code: the <code>slice::from_raw_parts_mut</code> function takes a raw pointer and a length, and it creates a slice. We use this function to create a slice that starts from <code>ptr</code> and is <code>mid</code> items long. Then we call the <code>offset</code> method on <code>ptr</code> with <code>mid</code> as an argument to get a raw pointer that starts at <code>mid</code>, and we create a slice using that pointer and the remaining number of items after <code>mid</code> as the length.</p> <p>The function <code>slice::from_raw_parts_mut</code> is unsafe because it takes a raw pointer and must trust that this pointer is valid. The <code>offset</code> method on raw pointers is also unsafe, because it must trust that the offset location is also a valid pointer. Therefore, we had to put an <code>unsafe</code> block around our calls to <code>slice::from_raw_parts_mut</code> and <code>offset</code> so we could call them. By looking at the code and by adding the assertion that <code>mid</code> must be less than or equal to <code>len</code>, we can tell that all the raw pointers used within the <code>unsafe</code> block will be valid pointers to data within the slice. This is an acceptable and appropriate use of <code>unsafe</code>.</p> <p>Note that we don’t need to mark the resulting <code>split_at_mut</code> function as <code>unsafe</code>, and we can call this function from safe Rust. We’ve created a safe abstraction to the unsafe code with an implementation of the function that uses <code>unsafe</code> code in a safe way, because it creates only valid pointers from the data this function has access to.</p> <p>In contrast, the use of <code>slice::from_raw_parts_mut</code> in Listing 19-7 would likely crash when the slice is used. This code takes an arbitrary memory location and creates a slice 10,000 items long.</p> <pre><pre class="playpen"><code class="language-rust unsafe"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>use std::slice; let address = 0x01234usize; let r = address as *mut i32; let slice: &[i32] = unsafe { slice::from_raw_parts_mut(r, 10000) }; <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-7: Creating a slice from an arbitrary memory location</span></p> <p>We don’t own the memory at this arbitrary location, and there is no guarantee that the slice this code creates contains valid <code>i32</code> values. Attempting to use <code>slice</code> as though it’s a valid slice results in undefined behavior.</p> <h4><a class="header" href="#using-extern-functions-to-call-external-code" id="using-extern-functions-to-call-external-code">Using <code>extern</code> Functions to Call External Code</a></h4> <p>Sometimes, your Rust code might need to interact with code written in another language. For this, Rust has a keyword, <code>extern</code>, that facilitates the creation and use of a <em>Foreign Function Interface (FFI)</em>. An FFI is a way for a programming language to define functions and enable a different (foreign) programming language to call those functions.</p> <p>Listing 19-8 demonstrates how to set up an integration with the <code>abs</code> function from the C standard library. Functions declared within <code>extern</code> blocks are always unsafe to call from Rust code. The reason is that other languages don’t enforce Rust’s rules and guarantees, and Rust can’t check them, so responsibility falls on the programmer to ensure safety.</p> <p><span class="filename">Filename: src/main.rs</span></p> <pre><pre class="playpen"><code class="language-rust unsafe">extern "C" { fn abs(input: i32) -> i32; } fn main() { unsafe { println!("Absolute value of -3 according to C: {}", abs(-3)); } } </code></pre></pre> <p><span class="caption">Listing 19-8: Declaring and calling an <code>extern</code> function defined in another language</span></p> <p>Within the <code>extern "C"</code> block, we list the names and signatures of external functions from another language we want to call. The <code>"C"</code> part defines which <em>application binary interface (ABI)</em> the external function uses: the ABI defines how to call the function at the assembly level. The <code>"C"</code> ABI is the most common and follows the C programming language’s ABI.</p> <blockquote> <h4><a class="header" href="#calling-rust-functions-from-other-languages" id="calling-rust-functions-from-other-languages">Calling Rust Functions from Other Languages</a></h4> <p>We can also use <code>extern</code> to create an interface that allows other languages to call Rust functions. Instead of an <code>extern</code> block, we add the <code>extern</code> keyword and specify the ABI to use just before the <code>fn</code> keyword. We also need to add a <code>#[no_mangle]</code> annotation to tell the Rust compiler not to mangle the name of this function. <em>Mangling</em> is when a compiler changes the name we’ve given a function to a different name that contains more information for other parts of the compilation process to consume but is less human readable. Every programming language compiler mangles names slightly differently, so for a Rust function to be nameable by other languages, we must disable the Rust compiler’s name mangling.</p> <p>In the following example, we make the <code>call_from_c</code> function accessible from C code, after it’s compiled to a shared library and linked from C:</p> <pre><pre class="playpen"><code class="language-rust"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>#[no_mangle] pub extern "C" fn call_from_c() { println!("Just called a Rust function from C!"); } <span class="boring">} </span></code></pre></pre> <p>This usage of <code>extern</code> does not require <code>unsafe</code>.</p> </blockquote> <h3><a class="header" href="#accessing-or-modifying-a-mutable-static-variable" id="accessing-or-modifying-a-mutable-static-variable">Accessing or Modifying a Mutable Static Variable</a></h3> <p>Until now, we’ve not talked about <em>global variables</em>, which Rust does support but can be problematic with Rust’s ownership rules. If two threads are accessing the same mutable global variable, it can cause a data race.</p> <p>In Rust, global variables are called <em>static</em> variables. Listing 19-9 shows an example declaration and use of a static variable with a string slice as a value.</p> <p><span class="filename">Filename: src/main.rs</span></p> <pre><pre class="playpen"><code class="language-rust">static HELLO_WORLD: &str = "Hello, world!"; fn main() { println!("name is: {}", HELLO_WORLD); } </code></pre></pre> <p><span class="caption">Listing 19-9: Defining and using an immutable static variable</span></p> <p>Static variables are similar to constants, which we discussed in the <a href="ch03-01-variables-and-mutability.html#differences-between-variables-and-constants">“Differences Between Variables and Constants”</a><!-- ignore --> section in Chapter 3. The names of static variables are in <code>SCREAMING_SNAKE_CASE</code> by convention, and we <em>must</em> annotate the variable’s type, which is <code>&'static str</code> in this example. Static variables can only store references with the <code>'static</code> lifetime, which means the Rust compiler can figure out the lifetime; we don’t need to annotate it explicitly. Accessing an immutable static variable is safe.</p> <p>Constants and immutable static variables might seem similar, but a subtle difference is that values in a static variable have a fixed address in memory. Using the value will always access the same data. Constants, on the other hand, are allowed to duplicate their data whenever they’re used.</p> <p>Another difference between constants and static variables is that static variables can be mutable. Accessing and modifying mutable static variables is <em>unsafe</em>. Listing 19-10 shows how to declare, access, and modify a mutable static variable named <code>COUNTER</code>.</p> <p><span class="filename">Filename: src/main.rs</span></p> <pre><pre class="playpen"><code class="language-rust unsafe">static mut COUNTER: u32 = 0; fn add_to_count(inc: u32) { unsafe { COUNTER += inc; } } fn main() { add_to_count(3); unsafe { println!("COUNTER: {}", COUNTER); } } </code></pre></pre> <p><span class="caption">Listing 19-10: Reading from or writing to a mutable static variable is unsafe</span></p> <p>As with regular variables, we specify mutability using the <code>mut</code> keyword. Any code that reads or writes from <code>COUNTER</code> must be within an <code>unsafe</code> block. This code compiles and prints <code>COUNTER: 3</code> as we would expect because it’s single threaded. Having multiple threads access <code>COUNTER</code> would likely result in data races.</p> <p>With mutable data that is globally accessible, it’s difficult to ensure there are no data races, which is why Rust considers mutable static variables to be unsafe. Where possible, it’s preferable to use the concurrency techniques and thread-safe smart pointers we discussed in Chapter 16 so the compiler checks that data accessed from different threads is done safely.</p> <h3><a class="header" href="#implementing-an-unsafe-trait" id="implementing-an-unsafe-trait">Implementing an Unsafe Trait</a></h3> <p>The final action that works only with <code>unsafe</code> is implementing an unsafe trait. A trait is unsafe when at least one of its methods has some invariant that the compiler can’t verify. We can declare that a trait is <code>unsafe</code> by adding the <code>unsafe</code> keyword before <code>trait</code> and marking the implementation of the trait as <code>unsafe</code> too, as shown in Listing 19-11.</p> <pre><pre class="playpen"><code class="language-rust unsafe"> <span class="boring">#![allow(unused_variables)] </span><span class="boring">fn main() { </span>unsafe trait Foo { // methods go here } unsafe impl Foo for i32 { // method implementations go here } <span class="boring">} </span></code></pre></pre> <p><span class="caption">Listing 19-11: Defining and implementing an unsafe trait</span></p> <p>By using <code>unsafe impl</code>, we’re promising that we’ll uphold the invariants that the compiler can’t verify.</p> <p>As an example, recall the <code>Sync</code> and <code>Send</code> marker traits we discussed in the <a href="ch16-04-extensible-concurrency-sync-and-send.html#extensible-concurrency-with-the-sync-and-send-traits">“Extensible Concurrency with the <code>Sync</code> and <code>Send</code> Traits”</a><!-- ignore --> section in Chapter 16: the compiler implements these traits automatically if our types are composed entirely of <code>Send</code> and <code>Sync</code> types. If we implement a type that contains a type that is not <code>Send</code> or <code>Sync</code>, such as raw pointers, and we want to mark that type as <code>Send</code> or <code>Sync</code>, we must use <code>unsafe</code>. Rust can’t verify that our type upholds the guarantees that it can be safely sent across threads or accessed from multiple threads; therefore, we need to do those checks manually and indicate as such with <code>unsafe</code>.</p> <h3><a class="header" href="#when-to-use-unsafe-code" id="when-to-use-unsafe-code">When to Use Unsafe Code</a></h3> <p>Using <code>unsafe</code> to take one of the four actions (superpowers) just discussed isn’t wrong or even frowned upon. But it is trickier to get <code>unsafe</code> code correct because the compiler can’t help uphold memory safety. When you have a reason to use <code>unsafe</code> code, you can do so, and having the explicit <code>unsafe</code> annotation makes it easier to track down the source of problems if they occur.</p> </main> <nav class="nav-wrapper" aria-label="Page navigation"> <!-- Mobile navigation buttons --> <a rel="prev" href="ch19-00-advanced-features.html" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left"> <i class="fa fa-angle-left"></i> </a> <a rel="next" href="ch19-03-advanced-traits.html" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right"> <i class="fa fa-angle-right"></i> </a> <div style="clear: both"></div> </nav> </div> </div> <nav class="nav-wide-wrapper" aria-label="Page navigation"> <a href="ch19-00-advanced-features.html" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left"> <i class="fa fa-angle-left"></i> </a> <a href="ch19-03-advanced-traits.html" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right"> <i class="fa fa-angle-right"></i> </a> </nav> </div> <script type="text/javascript"> window.playpen_copyable = true; </script> <script src="elasticlunr.min.js" type="text/javascript" charset="utf-8"></script> <script src="mark.min.js" type="text/javascript" charset="utf-8"></script> <script src="searcher.js" type="text/javascript" charset="utf-8"></script> <script src="clipboard.min.js" type="text/javascript" charset="utf-8"></script> <script src="highlight.js" type="text/javascript" charset="utf-8"></script> <script src="book.js" type="text/javascript" charset="utf-8"></script> <!-- Custom JS scripts --> <script type="text/javascript" src="ferris.js"></script> </body> </html>